Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of (3+2*x)/(1+5*x)
Limit of x*2^x*3^(-x)
Limit of (4+x^2)/(-6+2*x)
Identical expressions
acot(x)/ two
arcco tangent of gent of (x) divide by 2
arcco tangent of gent of (x) divide by two
acotx/2
acot(x) divide by 2
Similar expressions
(x-acot(x))/(2*x^3)
(x/4+acot(x/2))/x
x*acot(x/2)
x*(pi-2*acot(x))/2
arccot(x)/2
arccotx/2
Limit of the function
/
acot(x)/2
Limit of the function acot(x)/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/acot(x)\ lim |-------| x->oo\ 2 /
lim
x
→
∞
(
acot
(
x
)
2
)
\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right)
x
→
∞
lim
(
2
acot
(
x
)
)
Limit(acot(x)/2, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
2
-2
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
acot
(
x
)
2
)
=
0
\lim_{x \to \infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = 0
x
→
∞
lim
(
2
acot
(
x
)
)
=
0
lim
x
→
0
−
(
acot
(
x
)
2
)
=
−
π
4
\lim_{x \to 0^-}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = - \frac{\pi}{4}
x
→
0
−
lim
(
2
acot
(
x
)
)
=
−
4
π
More at x→0 from the left
lim
x
→
0
+
(
acot
(
x
)
2
)
=
π
4
\lim_{x \to 0^+}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = \frac{\pi}{4}
x
→
0
+
lim
(
2
acot
(
x
)
)
=
4
π
More at x→0 from the right
lim
x
→
1
−
(
acot
(
x
)
2
)
=
π
8
\lim_{x \to 1^-}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = \frac{\pi}{8}
x
→
1
−
lim
(
2
acot
(
x
)
)
=
8
π
More at x→1 from the left
lim
x
→
1
+
(
acot
(
x
)
2
)
=
π
8
\lim_{x \to 1^+}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = \frac{\pi}{8}
x
→
1
+
lim
(
2
acot
(
x
)
)
=
8
π
More at x→1 from the right
lim
x
→
−
∞
(
acot
(
x
)
2
)
=
0
\lim_{x \to -\infty}\left(\frac{\operatorname{acot}{\left(x \right)}}{2}\right) = 0
x
→
−
∞
lim
(
2
acot
(
x
)
)
=
0
More at x→-oo
Rapid solution
[src]
0
0
0
0
Expand and simplify
The graph