Mister Exam

Other calculators:


(cot(x)/2)^(1/cos(x))

Limit of the function (cot(x)/2)^(1/cos(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
                1   
              ------
              cos(x)
      /cot(x)\      
 lim  |------|      
   pi \  2   /      
x->--+              
   2                
limxπ2+(cot(x)2)1cos(x)\lim_{x \to \frac{\pi}{2}^+} \left(\frac{\cot{\left(x \right)}}{2}\right)^{\frac{1}{\cos{\left(x \right)}}}
Limit((cot(x)/2)^(1/cos(x)), x, pi/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-3.0-2.5-2.0-1.5-1.0-0.50.00.51.01.52.02.53.02e34-1e34
Rapid solution [src]
oo
\infty
One‐sided limits [src]
                1   
              ------
              cos(x)
      /cot(x)\      
 lim  |------|      
   pi \  2   /      
x->--+              
   2                
limxπ2+(cot(x)2)1cos(x)\lim_{x \to \frac{\pi}{2}^+} \left(\frac{\cot{\left(x \right)}}{2}\right)^{\frac{1}{\cos{\left(x \right)}}}
oo
\infty
= (-1.56378958503566e-6 - 5.80704762752308e-6j)
                1   
              ------
              cos(x)
      /cot(x)\      
 lim  |------|      
   pi \  2   /      
x->---              
   2                
limxπ2(cot(x)2)1cos(x)\lim_{x \to \frac{\pi}{2}^-} \left(\frac{\cot{\left(x \right)}}{2}\right)^{\frac{1}{\cos{\left(x \right)}}}
0
00
= 8.04967566078371e-35
= 8.04967566078371e-35
Numerical answer [src]
(-1.56378958503566e-6 - 5.80704762752308e-6j)
(-1.56378958503566e-6 - 5.80704762752308e-6j)
The graph
Limit of the function (cot(x)/2)^(1/cos(x))