Mister Exam

Other calculators:


(1-7/x)^x

Limit of the function (1-7/x)^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
            x
     /    7\ 
 lim |1 - -| 
x->oo\    x/ 
limx(17x)x\lim_{x \to \infty} \left(1 - \frac{7}{x}\right)^{x}
Limit((1 - 7/x)^x, x, oo, dir='-')
Detail solution
Let's take the limit
limx(17x)x\lim_{x \to \infty} \left(1 - \frac{7}{x}\right)^{x}
transform
do replacement
u=x7u = \frac{x}{-7}
then
limx(17x)x\lim_{x \to \infty} \left(1 - \frac{7}{x}\right)^{x} =
=
limu(1+1u)7u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 7 u}
=
limu(1+1u)7u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{- 7 u}
=
((limu(1+1u)u))7\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-7}
The limit
limu(1+1u)u\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu(1+1u)u))7=e7\left(\left(\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-7} = e^{-7}

The final answer:
limx(17x)x=e7\lim_{x \to \infty} \left(1 - \frac{7}{x}\right)^{x} = e^{-7}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100.01.0
Rapid solution [src]
 -7
e  
e7e^{-7}
The graph
Limit of the function (1-7/x)^x