Mister Exam

Other calculators


cot(x/2)

Integral of cot(x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |     /x\   
 |  cot|-| dx
 |     \2/   
 |           
/            
0            
01cot(x2)dx\int\limits_{0}^{1} \cot{\left(\frac{x}{2} \right)}\, dx
Integral(cot(x/2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    cot(x2)=cos(x2)sin(x2)\cot{\left(\frac{x}{2} \right)} = \frac{\cos{\left(\frac{x}{2} \right)}}{\sin{\left(\frac{x}{2} \right)}}

  2. There are multiple ways to do this integral.

    Method #1

    1. Let u=sin(x2)u = \sin{\left(\frac{x}{2} \right)}.

      Then let du=cos(x2)dx2du = \frac{\cos{\left(\frac{x}{2} \right)} dx}{2} and substitute 2du2 du:

      2udu\int \frac{2}{u}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1udu=21udu\int \frac{1}{u}\, du = 2 \int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        So, the result is: 2log(u)2 \log{\left(u \right)}

      Now substitute uu back in:

      2log(sin(x2))2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}

    Method #2

    1. Let u=x2u = \frac{x}{2}.

      Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

      2cos(u)sin(u)du\int \frac{2 \cos{\left(u \right)}}{\sin{\left(u \right)}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)sin(u)du=2cos(u)sin(u)du\int \frac{\cos{\left(u \right)}}{\sin{\left(u \right)}}\, du = 2 \int \frac{\cos{\left(u \right)}}{\sin{\left(u \right)}}\, du

        1. Let u=sin(u)u = \sin{\left(u \right)}.

          Then let du=cos(u)dudu = \cos{\left(u \right)} du and substitute dudu:

          1udu\int \frac{1}{u}\, du

          1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

          Now substitute uu back in:

          log(sin(u))\log{\left(\sin{\left(u \right)} \right)}

        So, the result is: 2log(sin(u))2 \log{\left(\sin{\left(u \right)} \right)}

      Now substitute uu back in:

      2log(sin(x2))2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}

  3. Now simplify:

    2log(sin(x2))2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}

  4. Add the constant of integration:

    2log(sin(x2))+constant2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}+ \mathrm{constant}


The answer is:

2log(sin(x2))+constant2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                             
 |                              
 |    /x\               /   /x\\
 | cot|-| dx = C + 2*log|sin|-||
 |    \2/               \   \2//
 |                              
/                               
cot(x2)dx=C+2log(sin(x2))\int \cot{\left(\frac{x}{2} \right)}\, dx = C + 2 \log{\left(\sin{\left(\frac{x}{2} \right)} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2000020000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
88.096853256335
88.096853256335
The graph
Integral of cot(x/2) dx

    Use the examples entering the upper and lower limits of integration.