Mister Exam

Other calculators


cot(x/2)

Derivative of cot(x/2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /x\
cot|-|
   \2/
cot(x2)\cot{\left(\frac{x}{2} \right)}
cot(x/2)
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

      cot(x2)=1tan(x2)\cot{\left(\frac{x}{2} \right)} = \frac{1}{\tan{\left(\frac{x}{2} \right)}}

    2. Let u=tan(x2)u = \tan{\left(\frac{x}{2} \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxtan(x2)\frac{d}{d x} \tan{\left(\frac{x}{2} \right)}:

      1. Rewrite the function to be differentiated:

        tan(x2)=sin(x2)cos(x2)\tan{\left(\frac{x}{2} \right)} = \frac{\sin{\left(\frac{x}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(x2)f{\left(x \right)} = \sin{\left(\frac{x}{2} \right)} and g(x)=cos(x2)g{\left(x \right)} = \cos{\left(\frac{x}{2} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x2u = \frac{x}{2}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 12\frac{1}{2}

          The result of the chain rule is:

          cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x2u = \frac{x}{2}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 12\frac{1}{2}

          The result of the chain rule is:

          sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

        Now plug in to the quotient rule:

        sin2(x2)2+cos2(x2)2cos2(x2)\frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)}}

      The result of the chain rule is:

      sin2(x2)2+cos2(x2)2cos2(x2)tan2(x2)- \frac{\frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} \right)} \tan^{2}{\left(\frac{x}{2} \right)}}

    Method #2

    1. Rewrite the function to be differentiated:

      cot(x2)=cos(x2)sin(x2)\cot{\left(\frac{x}{2} \right)} = \frac{\cos{\left(\frac{x}{2} \right)}}{\sin{\left(\frac{x}{2} \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=cos(x2)f{\left(x \right)} = \cos{\left(\frac{x}{2} \right)} and g(x)=sin(x2)g{\left(x \right)} = \sin{\left(\frac{x}{2} \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        sin(x2)2- \frac{\sin{\left(\frac{x}{2} \right)}}{2}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=x2u = \frac{x}{2}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddxx2\frac{d}{d x} \frac{x}{2}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 12\frac{1}{2}

        The result of the chain rule is:

        cos(x2)2\frac{\cos{\left(\frac{x}{2} \right)}}{2}

      Now plug in to the quotient rule:

      sin2(x2)2cos2(x2)2sin2(x2)\frac{- \frac{\sin^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{\cos^{2}{\left(\frac{x}{2} \right)}}{2}}{\sin^{2}{\left(\frac{x}{2} \right)}}

  2. Now simplify:

    1(cos(x)+1)tan2(x2)- \frac{1}{\left(\cos{\left(x \right)} + 1\right) \tan^{2}{\left(\frac{x}{2} \right)}}


The answer is:

1(cos(x)+1)tan2(x2)- \frac{1}{\left(\cos{\left(x \right)} + 1\right) \tan^{2}{\left(\frac{x}{2} \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
         2/x\
      cot |-|
  1       \2/
- - - -------
  2      2   
cot2(x2)212- \frac{\cot^{2}{\left(\frac{x}{2} \right)}}{2} - \frac{1}{2}
The second derivative [src]
/       2/x\\    /x\
|1 + cot |-||*cot|-|
\        \2//    \2/
--------------------
         2          
(cot2(x2)+1)cot(x2)2\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \cot{\left(\frac{x}{2} \right)}}{2}
The third derivative [src]
 /       2/x\\ /         2/x\\ 
-|1 + cot |-||*|1 + 3*cot |-|| 
 \        \2// \          \2// 
-------------------------------
               4               
(cot2(x2)+1)(3cot2(x2)+1)4- \frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(3 \cot^{2}{\left(\frac{x}{2} \right)} + 1\right)}{4}
The graph
Derivative of cot(x/2)