Mister Exam

Integral of ysinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  y*sin(x) dx
 |             
/              
0              
01ysin(x)dx\int\limits_{0}^{1} y \sin{\left(x \right)}\, dx
Integral(y*sin(x), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    ysin(x)dx=ysin(x)dx\int y \sin{\left(x \right)}\, dx = y \int \sin{\left(x \right)}\, dx

    1. The integral of sine is negative cosine:

      sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

    So, the result is: ycos(x)- y \cos{\left(x \right)}

  2. Add the constant of integration:

    ycos(x)+constant- y \cos{\left(x \right)}+ \mathrm{constant}


The answer is:

ycos(x)+constant- y \cos{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | y*sin(x) dx = C - y*cos(x)
 |                           
/                            
cosxy-\cos x\,y
The answer [src]
y - y*cos(1)
(1cos1)y\left(1-\cos 1\right)\,y
=
=
y - y*cos(1)
ycos(1)+y- y \cos{\left(1 \right)} + y

    Use the examples entering the upper and lower limits of integration.