Integral of y*sin((x*y)/2) dx
The solution
The answer (Indefinite)
[src]
/ // 0 for y = 0\
| || |
| /x*y\ || /x*y\ |
| y*sin|---| dx = C + y*|<-2*cos|---| |
| \ 2 / || \ 2 / |
| ||----------- otherwise|
/ \\ y /
∫ysin(2xy)dx=C+y({0−y2cos(2xy)fory=0otherwise)
/ / y \ /x*y\
|- 2*cos|------| + 2*cos|---| for And(y > -oo, y < oo, y != 0)
| | ____| \ 4 /
< \\/ pi /
|
| 0 otherwise
\
{−2cos(πy)+2cos(4xy)0fory>−∞∧y<∞∧y=0otherwise
=
/ / y \ /x*y\
|- 2*cos|------| + 2*cos|---| for And(y > -oo, y < oo, y != 0)
| | ____| \ 4 /
< \\/ pi /
|
| 0 otherwise
\
{−2cos(πy)+2cos(4xy)0fory>−∞∧y<∞∧y=0otherwise
Piecewise((-2*cos(y/sqrt(pi)) + 2*cos(x*y/4), (y > -oo)∧(y < oo)∧(Ne(y, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.