Mister Exam

Other calculators


tan^2(5x)

Integral of tan^2(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  tan (5*x) dx
 |              
/               
0               
01tan2(5x)dx\int\limits_{0}^{1} \tan^{2}{\left(5 x \right)}\, dx
Integral(tan(5*x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    tan2(5x)=sec2(5x)1\tan^{2}{\left(5 x \right)} = \sec^{2}{\left(5 x \right)} - 1

  2. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

      sin(5x)5cos(5x)\frac{\sin{\left(5 x \right)}}{5 \cos{\left(5 x \right)}}

    1. The integral of a constant is the constant times the variable of integration:

      (1)dx=x\int \left(-1\right)\, dx = - x

    The result is: x+sin(5x)5cos(5x)- x + \frac{\sin{\left(5 x \right)}}{5 \cos{\left(5 x \right)}}

  3. Now simplify:

    x+tan(5x)5- x + \frac{\tan{\left(5 x \right)}}{5}

  4. Add the constant of integration:

    x+tan(5x)5+constant- x + \frac{\tan{\left(5 x \right)}}{5}+ \mathrm{constant}


The answer is:

x+tan(5x)5+constant- x + \frac{\tan{\left(5 x \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                 
 |                                  
 |    2                    sin(5*x) 
 | tan (5*x) dx = C - x + ----------
 |                        5*cos(5*x)
/                                   
tan(5x)5x5{{\tan \left(5\,x\right)-5\,x}\over{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.90200000-100000
The answer [src]
oo
tan555{{\tan 5-5}\over{5}}
=
=
oo
\infty
Numerical answer [src]
241.799578144155
241.799578144155
The graph
Integral of tan^2(5x) dx

    Use the examples entering the upper and lower limits of integration.