x / | | / 1\ | |sin(y) + y*sin(x) + -| dx | \ x/ | / 0
Integral(sin(y) + y*sin(x) + 1/x, (x, 0, x))
Integrate term-by-term:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of sine is negative cosine:
The result is:
The integral of is .
The result is:
Add the constant of integration:
The answer is:
/ | | / 1\ | |sin(y) + y*sin(x) + -| dx = C - cos(y) - y*cos(x) + log(x) | \ x/ | /
oo + x*sin(y) - y*cos(x) + log(x)
=
oo + x*sin(y) - y*cos(x) + log(x)
oo + x*sin(y) - y*cos(x) + log(x)
Use the examples entering the upper and lower limits of integration.