Integral of sin(y)+y*sin(x)+1/x dx
The solution
Detail solution
-
Integrate term-by-term:
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫ysin(x)dx=y∫sin(x)dx
-
The integral of sine is negative cosine:
∫sin(x)dx=−cos(x)
So, the result is: −ycos(x)
-
The integral of sine is negative cosine:
∫sin(y)dx=−cos(y)
The result is: −ycos(x)−cos(y)
-
The integral of x1 is log(x).
The result is: −ycos(x)+log(x)−cos(y)
-
Add the constant of integration:
−ycos(x)+log(x)−cos(y)+constant
The answer is:
−ycos(x)+log(x)−cos(y)+constant
The answer (Indefinite)
[src]
/
|
| / 1\
| |sin(y) + y*sin(x) + -| dx = C - cos(y) - y*cos(x) + log(x)
| \ x/
|
/
∫((ysin(x)+sin(y))+x1)dx=C−ycos(x)+log(x)−cos(y)
oo + x*sin(y) - y*cos(x) + log(x)
xsin(y)−ycos(x)+log(x)+∞
=
oo + x*sin(y) - y*cos(x) + log(x)
xsin(y)−ycos(x)+log(x)+∞
oo + x*sin(y) - y*cos(x) + log(x)
Use the examples entering the upper and lower limits of integration.