Mister Exam

Other calculators

Integral of sin(y)+y*sin(x)+1/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                           
  /                           
 |                            
 |  /                    1\   
 |  |sin(y) + y*sin(x) + -| dx
 |  \                    x/   
 |                            
/                             
0                             
0x((ysin(x)+sin(y))+1x)dx\int\limits_{0}^{x} \left(\left(y \sin{\left(x \right)} + \sin{\left(y \right)}\right) + \frac{1}{x}\right)\, dx
Integral(sin(y) + y*sin(x) + 1/x, (x, 0, x))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        ysin(x)dx=ysin(x)dx\int y \sin{\left(x \right)}\, dx = y \int \sin{\left(x \right)}\, dx

        1. The integral of sine is negative cosine:

          sin(x)dx=cos(x)\int \sin{\left(x \right)}\, dx = - \cos{\left(x \right)}

        So, the result is: ycos(x)- y \cos{\left(x \right)}

      1. The integral of sine is negative cosine:

        sin(y)dx=cos(y)\int \sin{\left(y \right)}\, dx = - \cos{\left(y \right)}

      The result is: ycos(x)cos(y)- y \cos{\left(x \right)} - \cos{\left(y \right)}

    1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

    The result is: ycos(x)+log(x)cos(y)- y \cos{\left(x \right)} + \log{\left(x \right)} - \cos{\left(y \right)}

  2. Add the constant of integration:

    ycos(x)+log(x)cos(y)+constant- y \cos{\left(x \right)} + \log{\left(x \right)} - \cos{\left(y \right)}+ \mathrm{constant}


The answer is:

ycos(x)+log(x)cos(y)+constant- y \cos{\left(x \right)} + \log{\left(x \right)} - \cos{\left(y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                           
 |                                                            
 | /                    1\                                    
 | |sin(y) + y*sin(x) + -| dx = C - cos(y) - y*cos(x) + log(x)
 | \                    x/                                    
 |                                                            
/                                                             
((ysin(x)+sin(y))+1x)dx=Cycos(x)+log(x)cos(y)\int \left(\left(y \sin{\left(x \right)} + \sin{\left(y \right)}\right) + \frac{1}{x}\right)\, dx = C - y \cos{\left(x \right)} + \log{\left(x \right)} - \cos{\left(y \right)}
The answer [src]
oo + x*sin(y) - y*cos(x) + log(x)
xsin(y)ycos(x)+log(x)+x \sin{\left(y \right)} - y \cos{\left(x \right)} + \log{\left(x \right)} + \infty
=
=
oo + x*sin(y) - y*cos(x) + log(x)
xsin(y)ycos(x)+log(x)+x \sin{\left(y \right)} - y \cos{\left(x \right)} + \log{\left(x \right)} + \infty
oo + x*sin(y) - y*cos(x) + log(x)

    Use the examples entering the upper and lower limits of integration.