Mister Exam

Other calculators

Integral of sin(y)+y*sin(x)+1/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                           
  /                           
 |                            
 |  /                    1\   
 |  |sin(y) + y*sin(x) + -| dx
 |  \                    x/   
 |                            
/                             
0                             
$$\int\limits_{0}^{x} \left(\left(y \sin{\left(x \right)} + \sin{\left(y \right)}\right) + \frac{1}{x}\right)\, dx$$
Integral(sin(y) + y*sin(x) + 1/x, (x, 0, x))
Detail solution
  1. Integrate term-by-term:

    1. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of sine is negative cosine:

        So, the result is:

      1. The integral of sine is negative cosine:

      The result is:

    1. The integral of is .

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                           
 |                                                            
 | /                    1\                                    
 | |sin(y) + y*sin(x) + -| dx = C - cos(y) - y*cos(x) + log(x)
 | \                    x/                                    
 |                                                            
/                                                             
$$\int \left(\left(y \sin{\left(x \right)} + \sin{\left(y \right)}\right) + \frac{1}{x}\right)\, dx = C - y \cos{\left(x \right)} + \log{\left(x \right)} - \cos{\left(y \right)}$$
The answer [src]
oo + x*sin(y) - y*cos(x) + log(x)
$$x \sin{\left(y \right)} - y \cos{\left(x \right)} + \log{\left(x \right)} + \infty$$
=
=
oo + x*sin(y) - y*cos(x) + log(x)
$$x \sin{\left(y \right)} - y \cos{\left(x \right)} + \log{\left(x \right)} + \infty$$
oo + x*sin(y) - y*cos(x) + log(x)

    Use the examples entering the upper and lower limits of integration.