Integral of ysin(xy) dx
The solution
The answer (Indefinite)
[src]
/ // 0 for y = 0\
| || |
| y*sin(x*y) dx = C + y*|<-cos(x*y) |
| ||---------- otherwise|
/ \\ y /
$$\int y \sin{\left(x y \right)}\, dx = C + y \left(\begin{cases} 0 & \text{for}\: y = 0 \\- \frac{\cos{\left(x y \right)}}{y} & \text{otherwise} \end{cases}\right)$$
/1 - cos(y) for And(y > -oo, y < oo, y != 0)
<
\ 0 otherwise
$$\begin{cases} 1 - \cos{\left(y \right)} & \text{for}\: y > -\infty \wedge y < \infty \wedge y \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 - cos(y) for And(y > -oo, y < oo, y != 0)
<
\ 0 otherwise
$$\begin{cases} 1 - \cos{\left(y \right)} & \text{for}\: y > -\infty \wedge y < \infty \wedge y \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1 - cos(y), (y > -oo)∧(y < oo)∧(Ne(y, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.