Integral of ysin(xy) dx
The solution
The answer (Indefinite)
[src]
/ // 0 for y = 0\
| || |
| y*sin(x*y) dx = C + y*|<-cos(x*y) |
| ||---------- otherwise|
/ \\ y /
∫ysin(xy)dx=C+y({0−ycos(xy)fory=0otherwise)
/1 - cos(y) for And(y > -oo, y < oo, y != 0)
<
\ 0 otherwise
{1−cos(y)0fory>−∞∧y<∞∧y=0otherwise
=
/1 - cos(y) for And(y > -oo, y < oo, y != 0)
<
\ 0 otherwise
{1−cos(y)0fory>−∞∧y<∞∧y=0otherwise
Piecewise((1 - cos(y), (y > -oo)∧(y < oo)∧(Ne(y, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.