Integral of y*sin(x*y*z) dx
The solution
The answer (Indefinite)
[src]
/ // 0 for Or(y = 0, z = 0)\
| || |
| y*sin(x*y*z) dx = C + y*|<-cos(x*y*z) |
| ||------------ otherwise |
/ \\ y*z /
∫ysin(zxy)dx=C+y({0−yzcos(zxy)fory=0∨z=0otherwise)
/1 cos(y*z)
|- - -------- for y*z != 0
{−zcos(yz)+z10foryz=0otherwise
=
/1 cos(y*z)
|- - -------- for y*z != 0
{−zcos(yz)+z10foryz=0otherwise
Piecewise((1/z - cos(y*z)/z, Ne(y*z, 0)), (0, True))
Use the examples entering the upper and lower limits of integration.