Integral of y*sin(x*y*z) dx
The solution
The answer (Indefinite)
[src]
/ // 0 for Or(y = 0, z = 0)\
| || |
| y*sin(x*y*z) dx = C + y*|<-cos(x*y*z) |
| ||------------ otherwise |
/ \\ y*z /
$$\int y \sin{\left(z x y \right)}\, dx = C + y \left(\begin{cases} 0 & \text{for}\: y = 0 \vee z = 0 \\- \frac{\cos{\left(z x y \right)}}{y z} & \text{otherwise} \end{cases}\right)$$
/1 cos(y*z)
|- - -------- for y*z != 0
$$\begin{cases} - \frac{\cos{\left(y z \right)}}{z} + \frac{1}{z} & \text{for}\: y z \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
/1 cos(y*z)
|- - -------- for y*z != 0
$$\begin{cases} - \frac{\cos{\left(y z \right)}}{z} + \frac{1}{z} & \text{for}\: y z \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/z - cos(y*z)/z, Ne(y*z, 0)), (0, True))
Use the examples entering the upper and lower limits of integration.