Mister Exam

Other calculators

Integral of y*sin(x*y*z) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  y*sin(x*y*z) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} y \sin{\left(z x y \right)}\, dx$$
Integral(y*sin((x*y)*z), (x, 0, 1))
The answer (Indefinite) [src]
  /                        //     0        for Or(y = 0, z = 0)\
 |                         ||                                  |
 | y*sin(x*y*z) dx = C + y*|<-cos(x*y*z)                       |
 |                         ||------------       otherwise      |
/                          \\    y*z                           /
$$\int y \sin{\left(z x y \right)}\, dx = C + y \left(\begin{cases} 0 & \text{for}\: y = 0 \vee z = 0 \\- \frac{\cos{\left(z x y \right)}}{y z} & \text{otherwise} \end{cases}\right)$$
The answer [src]
/1   cos(y*z)              
|- - --------  for y*z != 0

            
$$\begin{cases} - \frac{\cos{\left(y z \right)}}{z} + \frac{1}{z} & \text{for}\: y z \neq 0 \\0 & \text{otherwise} \end{cases}$$
=
=
/1   cos(y*z)              
|- - --------  for y*z != 0

            
$$\begin{cases} - \frac{\cos{\left(y z \right)}}{z} + \frac{1}{z} & \text{for}\: y z \neq 0 \\0 & \text{otherwise} \end{cases}$$
Piecewise((1/z - cos(y*z)/z, Ne(y*z, 0)), (0, True))

    Use the examples entering the upper and lower limits of integration.