1 / | | n - 1 | x dx | / 0
Integral(x^(n - 1), (x, 0, 1))
The integral of is when :
Now simplify:
Add the constant of integration:
The answer is:
/ // n \ | || x | | n - 1 || -- for n - 1 != -1| | x dx = C + |< n | | || | / ||log(x) otherwise | \\ /
/ n |1 0 |- - -- for And(n > -oo, n < oo, n != 0)
=
/ n |1 0 |- - -- for And(n > -oo, n < oo, n != 0)
Piecewise((1/n - 0^n/n, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (oo, True))
Use the examples entering the upper and lower limits of integration.