Mister Exam

Integral of xcos(x)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |  x*cos(x) dx
 |             
/              
0              
$$\int\limits_{0}^{1} x \cos{\left(x \right)}\, dx$$
Integral(x*cos(x), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of cosine is sine:

    Now evaluate the sub-integral.

  2. The integral of sine is negative cosine:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 | x*cos(x) dx = C + x*sin(x) + cos(x)
 |                                    
/                                     
$$\int x \cos{\left(x \right)}\, dx = C + x \sin{\left(x \right)} + \cos{\left(x \right)}$$
The graph
The answer [src]
-1 + cos(1) + sin(1)
$$-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
=
=
-1 + cos(1) + sin(1)
$$-1 + \cos{\left(1 \right)} + \sin{\left(1 \right)}$$
-1 + cos(1) + sin(1)
Numerical answer [src]
0.381773290676036
0.381773290676036
The graph
Integral of xcos(x)dx dx

    Use the examples entering the upper and lower limits of integration.