Mister Exam

Other calculators

Integral of (x^n-1)/log(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  n          
  /          
 |           
 |   n       
 |  x  - 1   
 |  ------ dx
 |  log(x)   
 |           
/            
0            
$$\int\limits_{0}^{n} \frac{x^{n} - 1}{\log{\left(x \right)}}\, dx$$
Integral((x^n - 1*1)/log(x), (x, 0, n))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                  EiRule(a=n + 1, b=0, context=exp(_u)*exp(_u*n)/_u, symbol=_u)

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

                EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

              So, the result is:

            Now substitute back in:

          The result is:

        Now substitute back in:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

          EiRule(a=n + 1, b=0, context=exp(_u)*exp(_u*n)/_u, symbol=_u)

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

          LiRule(a=1, b=0, context=1/log(x), symbol=x)

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                                
 |  n                                             
 | x  - 1                                         
 | ------ dx = C - Ei(log(x)) + Ei((1 + n)*log(x))
 | log(x)                                         
 |                                                
/                                                 
$${{\int {{{e^{n\,\log x}}\over{\left(\log x\right)^2}}}{\;dx}}\over{ n+1}}+{{x\,e^{n\,\log x}}\over{\left(n+1\right)\,\log x}}+\Gamma \left(0 , -\log x\right)$$
The answer [src]
  n           
  /           
 |            
 |        n   
 |  -1 + x    
 |  ------- dx
 |   log(x)   
 |            
/             
0             
$$\int\limits_{0}^{n} \frac{x^{n} - 1}{\log{\left(x \right)}}\, dx$$
=
=
  n           
  /           
 |            
 |        n   
 |  -1 + x    
 |  ------- dx
 |   log(x)   
 |            
/             
0             
$$\int\limits_{0}^{n} \frac{x^{n} - 1}{\log{\left(x \right)}}\, dx$$

    Use the examples entering the upper and lower limits of integration.