n / | | n | x - 1 | ------ dx | log(x) | / 0
Integral((x^n - 1*1)/log(x), (x, 0, n))
There are multiple ways to do this integral.
Let .
Then let and substitute :
Let .
Then let and substitute :
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
EiRule(a=n + 1, b=0, context=exp(_u)*exp(_u*n)/_u, symbol=_u)
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
So, the result is:
Now substitute back in:
The result is:
Now substitute back in:
Now substitute back in:
Rewrite the integrand:
Integrate term-by-term:
Let .
Then let and substitute :
EiRule(a=n + 1, b=0, context=exp(_u)*exp(_u*n)/_u, symbol=_u)
Now substitute back in:
The integral of a constant times a function is the constant times the integral of the function:
LiRule(a=1, b=0, context=1/log(x), symbol=x)
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | n | x - 1 | ------ dx = C - Ei(log(x)) + Ei((1 + n)*log(x)) | log(x) | /
Use the examples entering the upper and lower limits of integration.