Mister Exam

Derivative of x^(n-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 n - 1
x     
$$x^{n - 1}$$
d / n - 1\
--\x     /
dx        
$$\frac{\partial}{\partial x} x^{n - 1}$$
Detail solution
  1. Apply the power rule: goes to

  2. Now simplify:


The answer is:

The first derivative [src]
 n - 1        
x     *(n - 1)
--------------
      x       
$$\frac{x^{n - 1} \left(n - 1\right)}{x}$$
The second derivative [src]
 -1 + n                  
x      *(-1 + n)*(-2 + n)
-------------------------
             2           
            x            
$$\frac{x^{n - 1} \left(n - 2\right) \left(n - 1\right)}{x^{2}}$$
The third derivative [src]
 -1 + n          /            2      \
x      *(-1 + n)*\5 + (-1 + n)  - 3*n/
--------------------------------------
                   3                  
                  x                   
$$\frac{x^{n - 1} \left(n - 1\right) \left(- 3 n + \left(n - 1\right)^{2} + 5\right)}{x^{3}}$$