Integral of x*exp(2*x) dx
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(x)=x and let dv(x)=e2x.
Then du(x)=1.
To find v(x):
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2x
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫2e2xdx=2∫e2xdx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫2eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 2eu
Now substitute u back in:
2e2x
So, the result is: 4e2x
-
Now simplify:
4(2x−1)e2x
-
Add the constant of integration:
4(2x−1)e2x+constant
The answer is:
4(2x−1)e2x+constant
The answer (Indefinite)
[src]
/
| 2*x 2*x
| 2*x e x*e
| x*e dx = C - ---- + ------
| 4 2
/
∫xe2xdx=C+2xe2x−4e2x
The graph
41+4e2
=
41+4e2
Use the examples entering the upper and lower limits of integration.