Mister Exam

Other calculators

Integral of x*exp^(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 log(34)         
    /            
   |             
   |       2*x   
   |    x*E    dx
   |             
  /              
  0              
$$\int\limits_{0}^{\log{\left(34 \right)}} e^{2 x} x\, dx$$
Integral(x*E^(2*x), (x, 0, log(34)))
The answer (Indefinite) [src]
  /                               
 |                             2*x
 |    2*x          (-1 + 2*x)*e   
 | x*E    dx = C + ---------------
 |                        4       
/                                 
$$\int e^{2 x} x\, dx = C + \frac{\left(2 x - 1\right) e^{2 x}}{4}$$
The graph
The answer [src]
-1155/4 + 578*log(34)
$$- \frac{1155}{4} + 578 \log{\left(34 \right)}$$
=
=
-1155/4 + 578*log(34)
$$- \frac{1155}{4} + 578 \log{\left(34 \right)}$$
-1155/4 + 578*log(34)
Numerical answer [src]
1749.48638322814
1749.48638322814

    Use the examples entering the upper and lower limits of integration.