Mister Exam

Other calculators


cos(x)*exp(2*x)

Integral of cos(x)*exp(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |          2*x   
 |  cos(x)*e    dx
 |                
/                 
0                 
01e2xcos(x)dx\int\limits_{0}^{1} e^{2 x} \cos{\left(x \right)}\, dx
Integral(cos(x)*exp(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand e2xcos(x)e^{2 x} \cos{\left(x \right)}:

      Let u(x)=cos(x)u{\left(x \right)} = \cos{\left(x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x)dx=e2xcos(x)2(e2xsin(x)2)dx\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \cos{\left(x \right)}}{2} - \int \left(- \frac{e^{2 x} \sin{\left(x \right)}}{2}\right)\, dx.

    2. For the integrand e2xsin(x)2- \frac{e^{2 x} \sin{\left(x \right)}}{2}:

      Let u(x)=sin(x)2u{\left(x \right)} = - \frac{\sin{\left(x \right)}}{2} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

      Then e2xcos(x)dx=e2xsin(x)4+e2xcos(x)2+(e2xcos(x)4)dx\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \sin{\left(x \right)}}{4} + \frac{e^{2 x} \cos{\left(x \right)}}{2} + \int \left(- \frac{e^{2 x} \cos{\left(x \right)}}{4}\right)\, dx.

    3. Notice that the integrand has repeated itself, so move it to one side:

      5e2xcos(x)dx4=e2xsin(x)4+e2xcos(x)2\frac{5 \int e^{2 x} \cos{\left(x \right)}\, dx}{4} = \frac{e^{2 x} \sin{\left(x \right)}}{4} + \frac{e^{2 x} \cos{\left(x \right)}}{2}

      Therefore,

      e2xcos(x)dx=e2xsin(x)5+2e2xcos(x)5\int e^{2 x} \cos{\left(x \right)}\, dx = \frac{e^{2 x} \sin{\left(x \right)}}{5} + \frac{2 e^{2 x} \cos{\left(x \right)}}{5}

  2. Now simplify:

    (sin(x)+2cos(x))e2x5\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}

  3. Add the constant of integration:

    (sin(x)+2cos(x))e2x5+constant\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}+ \mathrm{constant}


The answer is:

(sin(x)+2cos(x))e2x5+constant\frac{\left(\sin{\left(x \right)} + 2 \cos{\left(x \right)}\right) e^{2 x}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                
 |                       2*x                    2*x
 |         2*x          e   *sin(x)   2*cos(x)*e   
 | cos(x)*e    dx = C + ----------- + -------------
 |                           5              5      
/                                                  
e2xcos(x)dx=C+e2xsin(x)5+2e2xcos(x)5\int e^{2 x} \cos{\left(x \right)}\, dx = C + \frac{e^{2 x} \sin{\left(x \right)}}{5} + \frac{2 e^{2 x} \cos{\left(x \right)}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.9005
The answer [src]
       2                    2
  2   e *sin(1)   2*cos(1)*e 
- - + --------- + -----------
  5       5            5     
25+e2sin(1)5+2e2cos(1)5- \frac{2}{5} + \frac{e^{2} \sin{\left(1 \right)}}{5} + \frac{2 e^{2} \cos{\left(1 \right)}}{5}
=
=
       2                    2
  2   e *sin(1)   2*cos(1)*e 
- - + --------- + -----------
  5       5            5     
25+e2sin(1)5+2e2cos(1)5- \frac{2}{5} + \frac{e^{2} \sin{\left(1 \right)}}{5} + \frac{2 e^{2} \cos{\left(1 \right)}}{5}
-2/5 + exp(2)*sin(1)/5 + 2*cos(1)*exp(2)/5
Numerical answer [src]
2.4404648818501
2.4404648818501
The graph
Integral of cos(x)*exp(2*x) dx

    Use the examples entering the upper and lower limits of integration.