Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^3 Integral of e^3
  • Integral of 4*x*exp(x^2) Integral of 4*x*exp(x^2)
  • Integral of tan^(-1)x
  • Integral of x*2^x Integral of x*2^x
  • Identical expressions

  • x*exp(two x)/((x+ one)^2)
  • x multiply by exponent of (2x) divide by ((x plus 1) squared )
  • x multiply by exponent of (two x) divide by ((x plus one) squared )
  • x*exp(2x)/((x+1)2)
  • x*exp2x/x+12
  • x*exp(2x)/((x+1)²)
  • x*exp(2x)/((x+1) to the power of 2)
  • xexp(2x)/((x+1)^2)
  • xexp(2x)/((x+1)2)
  • xexp2x/x+12
  • xexp2x/x+1^2
  • x*exp(2x) divide by ((x+1)^2)
  • x*exp(2x)/((x+1)^2)dx
  • Similar expressions

  • x*exp(2x)/((x-1)^2)

Integral of x*exp(2x)/((x+1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (x + 1)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx$$
Integral((x*exp(2*x))/(x + 1)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 |     2*x            |     2*x    
 |  x*e               |  x*e       
 | -------- dx = C +  | -------- dx
 |        2           |        2   
 | (x + 1)            | (1 + x)    
 |                    |            
/                    /             
$$\int \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx = C + \int \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx$$
The answer [src]
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (1 + x)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx$$
=
=
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (1 + x)    
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx$$
Integral(x*exp(2*x)/(1 + x)^2, (x, 0, 1))
Numerical answer [src]
0.708260802667951
0.708260802667951

    Use the examples entering the upper and lower limits of integration.