Mister Exam

Other calculators

Integral of x*exp(2x)/((x+1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (x + 1)    
 |             
/              
0              
01xe2x(x+1)2dx\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx
Integral((x*exp(2*x))/(x + 1)^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                    /           
 |                    |            
 |     2*x            |     2*x    
 |  x*e               |  x*e       
 | -------- dx = C +  | -------- dx
 |        2           |        2   
 | (x + 1)            | (1 + x)    
 |                    |            
/                    /             
xe2x(x+1)2dx=C+xe2x(x+1)2dx\int \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx = C + \int \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx
The answer [src]
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (1 + x)    
 |             
/              
0              
01xe2x(x+1)2dx\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx
=
=
  1            
  /            
 |             
 |      2*x    
 |   x*e       
 |  -------- dx
 |         2   
 |  (1 + x)    
 |             
/              
0              
01xe2x(x+1)2dx\int\limits_{0}^{1} \frac{x e^{2 x}}{\left(x + 1\right)^{2}}\, dx
Integral(x*exp(2*x)/(1 + x)^2, (x, 0, 1))
Numerical answer [src]
0.708260802667951
0.708260802667951

    Use the examples entering the upper and lower limits of integration.