Integral of lnx/sqrtx dx
The solution
The answer (Indefinite)
[src]
/
|
| log(x) ___ ___
| ------ dx = C - 4*\/ x + 2*\/ x *log(x)
| ___
| \/ x
|
/
∫xlog(x)dx=C+2xlog(x)−4x
1
/
|
| / 2*log(x) /1 \
| | -------- for And|- < 1, x < 1|
| | ___ \x /
| | \/ x
| |
| | log(x) /1 \
| | ------ for Or|- < 1, x < 1|
| | ___ \x /
| < \/ x dx
| |
| | __0, 3 /3/2, 3/2, 1 | \
| |/__ | | x|
| |\_|3, 3 \ 1/2, 1/2, 0 | / __0, 3 /1/2, 3/2, 1 | \ __2, 1 / 0 3/2, 3/2 | \
| |-------------------------------------- + /__ | | x| /__ | | x|
| | 2 \_|3, 3 \ 1/2, 1/2, 0 | / \_|3, 3 \1/2, 1/2 0 | /
| |------------------------------------------------------------------------------- - -------------------------------- otherwise
| \ x x
|
/
0
0∫1⎩⎨⎧x2log(x)xlog(x)xG3,30,3(21,23,121,21,0x)+2G3,30,3(23,23,121,21,0x)−xG3,32,1(021,2123,230x)forx1<1∧x<1forx1<1∨x<1otherwisedx
=
1
/
|
| / 2*log(x) /1 \
| | -------- for And|- < 1, x < 1|
| | ___ \x /
| | \/ x
| |
| | log(x) /1 \
| | ------ for Or|- < 1, x < 1|
| | ___ \x /
| < \/ x dx
| |
| | __0, 3 /3/2, 3/2, 1 | \
| |/__ | | x|
| |\_|3, 3 \ 1/2, 1/2, 0 | / __0, 3 /1/2, 3/2, 1 | \ __2, 1 / 0 3/2, 3/2 | \
| |-------------------------------------- + /__ | | x| /__ | | x|
| | 2 \_|3, 3 \ 1/2, 1/2, 0 | / \_|3, 3 \1/2, 1/2 0 | /
| |------------------------------------------------------------------------------- - -------------------------------- otherwise
| \ x x
|
/
0
0∫1⎩⎨⎧x2log(x)xlog(x)xG3,30,3(21,23,121,21,0x)+2G3,30,3(23,23,121,21,0x)−xG3,32,1(021,2123,230x)forx1<1∧x<1forx1<1∨x<1otherwisedx
Use the examples entering the upper and lower limits of integration.