Mister Exam

Other calculators:


x*exp(2*x)

Limit of the function x*exp(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   2*x\
 lim  \x*e   /
x->-oo        
limx(xe2x)\lim_{x \to -\infty}\left(x e^{2 x}\right)
Limit(x*exp(2*x), x, -oo)
Lopital's rule
We have indeterminateness of type
-oo/oo,

i.e. limit for the numerator is
limxx=\lim_{x \to -\infty} x = -\infty
and limit for the denominator is
limxe2x=\lim_{x \to -\infty} e^{- 2 x} = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(xe2x)\lim_{x \to -\infty}\left(x e^{2 x}\right)
=
limx(ddxxddxe2x)\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} e^{- 2 x}}\right)
=
limx(e2x2)\lim_{x \to -\infty}\left(- \frac{e^{2 x}}{2}\right)
=
limx(e2x2)\lim_{x \to -\infty}\left(- \frac{e^{2 x}}{2}\right)
=
00
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-50000000005000000000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(xe2x)=0\lim_{x \to -\infty}\left(x e^{2 x}\right) = 0
limx(xe2x)=\lim_{x \to \infty}\left(x e^{2 x}\right) = \infty
More at x→oo
limx0(xe2x)=0\lim_{x \to 0^-}\left(x e^{2 x}\right) = 0
More at x→0 from the left
limx0+(xe2x)=0\lim_{x \to 0^+}\left(x e^{2 x}\right) = 0
More at x→0 from the right
limx1(xe2x)=e2\lim_{x \to 1^-}\left(x e^{2 x}\right) = e^{2}
More at x→1 from the left
limx1+(xe2x)=e2\lim_{x \to 1^+}\left(x e^{2 x}\right) = e^{2}
More at x→1 from the right
The graph
Limit of the function x*exp(2*x)