Mister Exam

Integral of x/(x-2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    x     
 |  ----- dx
 |  x - 2   
 |          
/           
0           
01xx2dx\int\limits_{0}^{1} \frac{x}{x - 2}\, dx
Integral(x/(x - 1*2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    xx2=1+2x2\frac{x}{x - 2} = 1 + \frac{2}{x - 2}

  2. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    1. The integral of a constant times a function is the constant times the integral of the function:

      2x2dx=21x2dx\int \frac{2}{x - 2}\, dx = 2 \int \frac{1}{x - 2}\, dx

      1. Let u=x2u = x - 2.

        Then let du=dxdu = dx and substitute dudu:

        1udu\int \frac{1}{u}\, du

        1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

        Now substitute uu back in:

        log(x2)\log{\left(x - 2 \right)}

      So, the result is: 2log(x2)2 \log{\left(x - 2 \right)}

    The result is: x+2log(x2)x + 2 \log{\left(x - 2 \right)}

  3. Add the constant of integration:

    x+2log(x2)+constantx + 2 \log{\left(x - 2 \right)}+ \mathrm{constant}


The answer is:

x+2log(x2)+constantx + 2 \log{\left(x - 2 \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                                 
 |   x                             
 | ----- dx = C + x + 2*log(-2 + x)
 | x - 2                           
 |                                 
/                                  
x+2log(x2)x+2\,\log \left(x-2\right)
The graph
0.001.000.100.200.300.400.500.600.700.800.901-2
The answer [src]
1 - 2*log(2)
12log21-2\,\log 2
=
=
1 - 2*log(2)
2log(2)+1- 2 \log{\left(2 \right)} + 1
Numerical answer [src]
-0.386294361119891
-0.386294361119891
The graph
Integral of x/(x-2) dx

    Use the examples entering the upper and lower limits of integration.