Mister Exam

Other calculators

Integral of (1-sqrt(x))/(x-2sqrt(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |         ___    
 |   1 - \/ x     
 |  ----------- dx
 |          ___   
 |  x - 2*\/ x    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1 - \sqrt{x}}{- 2 \sqrt{x} + x}\, dx$$
Integral((1 - sqrt(x))/(x - 2*sqrt(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                     
 |                                                      
 |        ___                                           
 |  1 - \/ x                    ___        /        ___\
 | ----------- dx = 4 + C - 2*\/ x  - 2*log\4 - 2*\/ x /
 |         ___                                          
 | x - 2*\/ x                                           
 |                                                      
/                                                       
$$\int \frac{1 - \sqrt{x}}{- 2 \sqrt{x} + x}\, dx = C - 2 \sqrt{x} - 2 \log{\left(4 - 2 \sqrt{x} \right)} + 4$$
The graph
The answer [src]
-2 + 2*log(2)
$$-2 + 2 \log{\left(2 \right)}$$
=
=
-2 + 2*log(2)
$$-2 + 2 \log{\left(2 \right)}$$
-2 + 2*log(2)
Numerical answer [src]
-0.613705638614818
-0.613705638614818

    Use the examples entering the upper and lower limits of integration.