Mister Exam

Derivative of x/(x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x  
-----
x - 2
xx2\frac{x}{x - 2}
x/(x - 2)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=xf{\left(x \right)} = x and g(x)=x2g{\left(x \right)} = x - 2.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x2x - 2 term by term:

      1. The derivative of the constant 2-2 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    2(x2)2- \frac{2}{\left(x - 2\right)^{2}}


The answer is:

2(x2)2- \frac{2}{\left(x - 2\right)^{2}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
  1        x    
----- - --------
x - 2          2
        (x - 2) 
x(x2)2+1x2- \frac{x}{\left(x - 2\right)^{2}} + \frac{1}{x - 2}
The second derivative [src]
  /       x   \
2*|-1 + ------|
  \     -2 + x/
---------------
           2   
   (-2 + x)    
2(xx21)(x2)2\frac{2 \left(\frac{x}{x - 2} - 1\right)}{\left(x - 2\right)^{2}}
The third derivative [src]
  /      x   \
6*|1 - ------|
  \    -2 + x/
--------------
          3   
  (-2 + x)    
6(xx2+1)(x2)3\frac{6 \left(- \frac{x}{x - 2} + 1\right)}{\left(x - 2\right)^{3}}
The graph
Derivative of x/(x-2)