Mister Exam

Other calculators

Integral of sqrt(4*x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
  /               
 |                
 |    _________   
 |  \/ 4*x + 1  dx
 |                
/                 
1                 
$$\int\limits_{1}^{2} \sqrt{4 x + 1}\, dx$$
Integral(sqrt(4*x + 1), (x, 1, 2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                               3/2
 |   _________          (4*x + 1)   
 | \/ 4*x + 1  dx = C + ------------
 |                           6      
/                                   
$$\int \sqrt{4 x + 1}\, dx = C + \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}$$
The graph
The answer [src]
        ___
9   5*\/ 5 
- - -------
2      6   
$$\frac{9}{2} - \frac{5 \sqrt{5}}{6}$$
=
=
        ___
9   5*\/ 5 
- - -------
2      6   
$$\frac{9}{2} - \frac{5 \sqrt{5}}{6}$$
9/2 - 5*sqrt(5)/6
Numerical answer [src]
2.63661001875018
2.63661001875018

    Use the examples entering the upper and lower limits of integration.