Mister Exam

Other calculators

Integral of x/(4^sqrt(4x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       x         
 |  ------------ dx
 |     _________   
 |   \/ 4*x + 1    
 |  4              
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{x}{4^{\sqrt{4 x + 1}}}\, dx$$
Integral(x/4^(sqrt(4*x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
                           /                  
  /                       |                   
 |                        |       _________   
 |      x                 |    -\/ 4*x + 1    
 | ------------ dx = C +  | x*4             dx
 |    _________           |                   
 |  \/ 4*x + 1           /                    
 | 4                                          
 |                                            
/                                             
$$\int \frac{x}{4^{\sqrt{4 x + 1}}}\, dx = C + \int 4^{- \sqrt{4 x + 1}} x\, dx$$
The graph
The answer [src]
                                               ___          ___          ___             ___      
                                            -\/ 5        -\/ 5        -\/ 5    ___    -\/ 5    ___
    1             3             3        7*4          3*4          3*4      *\/ 5    4      *\/ 5 
---------- + ----------- + ----------- - ---------- - ---------- - --------------- - -------------
      2             3             4            2            4               3           4*log(2)  
64*log (2)   128*log (2)   256*log (2)   16*log (2)   64*log (2)      32*log (2)                  
$$- \frac{7}{16 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{2}} - \frac{\sqrt{5}}{4 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}} - \frac{3 \sqrt{5}}{32 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{3}} - \frac{3}{64 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{4}} + \frac{1}{64 \log{\left(2 \right)}^{2}} + \frac{3}{256 \log{\left(2 \right)}^{4}} + \frac{3}{128 \log{\left(2 \right)}^{3}}$$
=
=
                                               ___          ___          ___             ___      
                                            -\/ 5        -\/ 5        -\/ 5    ___    -\/ 5    ___
    1             3             3        7*4          3*4          3*4      *\/ 5    4      *\/ 5 
---------- + ----------- + ----------- - ---------- - ---------- - --------------- - -------------
      2             3             4            2            4               3           4*log(2)  
64*log (2)   128*log (2)   256*log (2)   16*log (2)   64*log (2)      32*log (2)                  
$$- \frac{7}{16 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{2}} - \frac{\sqrt{5}}{4 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}} - \frac{3 \sqrt{5}}{32 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{3}} - \frac{3}{64 \cdot 4^{\sqrt{5}} \log{\left(2 \right)}^{4}} + \frac{1}{64 \log{\left(2 \right)}^{2}} + \frac{3}{256 \log{\left(2 \right)}^{4}} + \frac{3}{128 \log{\left(2 \right)}^{3}}$$
1/(64*log(2)^2) + 3/(128*log(2)^3) + 3/(256*log(2)^4) - 7*4^(-sqrt(5))/(16*log(2)^2) - 3*4^(-sqrt(5))/(64*log(2)^4) - 3*4^(-sqrt(5))*sqrt(5)/(32*log(2)^3) - 4^(-sqrt(5))*sqrt(5)/(4*log(2))
Numerical answer [src]
0.0387894316274524
0.0387894316274524

    Use the examples entering the upper and lower limits of integration.