Integral of dx/sqrt(4x+1)^3 dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(4x+1)31=4x4x+1+4x+11
-
Let u=4x+1.
Then let du=4x+12dx and substitute 2du:
∫2u21du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u21du=2∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
So, the result is: −2u1
Now substitute u back in:
−24x+11
Method #2
-
Rewrite the integrand:
(4x+1)31=4x4x+1+4x+11
-
Let u=4x+1.
Then let du=4x+12dx and substitute 2du:
∫2u21du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u21du=2∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
So, the result is: −2u1
Now substitute u back in:
−24x+11
-
Add the constant of integration:
−24x+11+constant
The answer is:
−24x+11+constant
The answer (Indefinite)
[src]
/
|
| 1 1
| ------------ dx = C - -------------
| 3 _________
| _________ 2*\/ 1 + 4*x
| \/ 4*x + 1
|
/
∫(4x+1)31dx=C−24x+11
The graph
___
1 \/ 5
- - -----
2 10
21−105
=
___
1 \/ 5
- - -----
2 10
21−105
Use the examples entering the upper and lower limits of integration.