Mister Exam

Other calculators

Integral of dx/sqrt(4x+1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |             3   
 |    _________    
 |  \/ 4*x + 1     
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(\sqrt{4 x + 1}\right)^{3}}\, dx$$
Integral(1/((sqrt(4*x + 1))^3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      1                      1      
 | ------------ dx = C - -------------
 |            3              _________
 |   _________           2*\/ 1 + 4*x 
 | \/ 4*x + 1                         
 |                                    
/                                     
$$\int \frac{1}{\left(\sqrt{4 x + 1}\right)^{3}}\, dx = C - \frac{1}{2 \sqrt{4 x + 1}}$$
The graph
The answer [src]
      ___
1   \/ 5 
- - -----
2     10 
$$\frac{1}{2} - \frac{\sqrt{5}}{10}$$
=
=
      ___
1   \/ 5 
- - -----
2     10 
$$\frac{1}{2} - \frac{\sqrt{5}}{10}$$
1/2 - sqrt(5)/10
Numerical answer [src]
0.276393202250021
0.276393202250021

    Use the examples entering the upper and lower limits of integration.