Mister Exam

Other calculators

Integral of dx/sqrt(4x+1)^3 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |             3   
 |    _________    
 |  \/ 4*x + 1     
 |                 
/                  
0                  
011(4x+1)3dx\int\limits_{0}^{1} \frac{1}{\left(\sqrt{4 x + 1}\right)^{3}}\, dx
Integral(1/((sqrt(4*x + 1))^3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

      1(4x+1)3=14x4x+1+4x+1\frac{1}{\left(\sqrt{4 x + 1}\right)^{3}} = \frac{1}{4 x \sqrt{4 x + 1} + \sqrt{4 x + 1}}

    2. Let u=4x+1u = \sqrt{4 x + 1}.

      Then let du=2dx4x+1du = \frac{2 dx}{\sqrt{4 x + 1}} and substitute du2\frac{du}{2}:

      12u2du\int \frac{1}{2 u^{2}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1u2du=1u2du2\int \frac{1}{u^{2}}\, du = \frac{\int \frac{1}{u^{2}}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        So, the result is: 12u- \frac{1}{2 u}

      Now substitute uu back in:

      124x+1- \frac{1}{2 \sqrt{4 x + 1}}

    Method #2

    1. Rewrite the integrand:

      1(4x+1)3=14x4x+1+4x+1\frac{1}{\left(\sqrt{4 x + 1}\right)^{3}} = \frac{1}{4 x \sqrt{4 x + 1} + \sqrt{4 x + 1}}

    2. Let u=4x+1u = \sqrt{4 x + 1}.

      Then let du=2dx4x+1du = \frac{2 dx}{\sqrt{4 x + 1}} and substitute du2\frac{du}{2}:

      12u2du\int \frac{1}{2 u^{2}}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        1u2du=1u2du2\int \frac{1}{u^{2}}\, du = \frac{\int \frac{1}{u^{2}}\, du}{2}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          1u2du=1u\int \frac{1}{u^{2}}\, du = - \frac{1}{u}

        So, the result is: 12u- \frac{1}{2 u}

      Now substitute uu back in:

      124x+1- \frac{1}{2 \sqrt{4 x + 1}}

  2. Add the constant of integration:

    124x+1+constant- \frac{1}{2 \sqrt{4 x + 1}}+ \mathrm{constant}


The answer is:

124x+1+constant- \frac{1}{2 \sqrt{4 x + 1}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                    
 |      1                      1      
 | ------------ dx = C - -------------
 |            3              _________
 |   _________           2*\/ 1 + 4*x 
 | \/ 4*x + 1                         
 |                                    
/                                     
1(4x+1)3dx=C124x+1\int \frac{1}{\left(\sqrt{4 x + 1}\right)^{3}}\, dx = C - \frac{1}{2 \sqrt{4 x + 1}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
      ___
1   \/ 5 
- - -----
2     10 
12510\frac{1}{2} - \frac{\sqrt{5}}{10}
=
=
      ___
1   \/ 5 
- - -----
2     10 
12510\frac{1}{2} - \frac{\sqrt{5}}{10}
1/2 - sqrt(5)/10
Numerical answer [src]
0.276393202250021
0.276393202250021

    Use the examples entering the upper and lower limits of integration.