Mister Exam

Other calculators

Integral of -sqrt(4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     _________   
 |  -\/ 4*x + 1  dx
 |                 
/                  
0                  
01(4x+1)dx\int\limits_{0}^{1} \left(- \sqrt{4 x + 1}\right)\, dx
Integral(-sqrt(4*x + 1), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (4x+1)dx=4x+1dx\int \left(- \sqrt{4 x + 1}\right)\, dx = - \int \sqrt{4 x + 1}\, dx

    1. Let u=4x+1u = 4 x + 1.

      Then let du=4dxdu = 4 dx and substitute du4\frac{du}{4}:

      u4du\int \frac{\sqrt{u}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        udu=udu4\int \sqrt{u}\, du = \frac{\int \sqrt{u}\, du}{4}

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          udu=2u323\int \sqrt{u}\, du = \frac{2 u^{\frac{3}{2}}}{3}

        So, the result is: u326\frac{u^{\frac{3}{2}}}{6}

      Now substitute uu back in:

      (4x+1)326\frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}

    So, the result is: (4x+1)326- \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}

  2. Now simplify:

    (4x+1)326- \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}

  3. Add the constant of integration:

    (4x+1)326+constant- \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}+ \mathrm{constant}


The answer is:

(4x+1)326+constant- \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                3/2
 |    _________          (4*x + 1)   
 | -\/ 4*x + 1  dx = C - ------------
 |                            6      
/                                    
(4x+1)dx=C(4x+1)326\int \left(- \sqrt{4 x + 1}\right)\, dx = C - \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-2.50.0
The answer [src]
        ___
1   5*\/ 5 
- - -------
6      6   
16556\frac{1}{6} - \frac{5 \sqrt{5}}{6}
=
=
        ___
1   5*\/ 5 
- - -------
6      6   
16556\frac{1}{6} - \frac{5 \sqrt{5}}{6}
1/6 - 5*sqrt(5)/6
Numerical answer [src]
-1.69672331458316
-1.69672331458316

    Use the examples entering the upper and lower limits of integration.