Mister Exam

Other calculators

Integral of -sqrt(4x+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     _________   
 |  -\/ 4*x + 1  dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \left(- \sqrt{4 x + 1}\right)\, dx$$
Integral(-sqrt(4*x + 1), (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                3/2
 |    _________          (4*x + 1)   
 | -\/ 4*x + 1  dx = C - ------------
 |                            6      
/                                    
$$\int \left(- \sqrt{4 x + 1}\right)\, dx = C - \frac{\left(4 x + 1\right)^{\frac{3}{2}}}{6}$$
The graph
The answer [src]
        ___
1   5*\/ 5 
- - -------
6      6   
$$\frac{1}{6} - \frac{5 \sqrt{5}}{6}$$
=
=
        ___
1   5*\/ 5 
- - -------
6      6   
$$\frac{1}{6} - \frac{5 \sqrt{5}}{6}$$
1/6 - 5*sqrt(5)/6
Numerical answer [src]
-1.69672331458316
-1.69672331458316

    Use the examples entering the upper and lower limits of integration.