Integral of sin(10*x) dx
The solution
Detail solution
-
Let u=10x.
Then let du=10dx and substitute 10du:
∫10sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=10∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −10cos(u)
Now substitute u back in:
−10cos(10x)
-
Add the constant of integration:
−10cos(10x)+constant
The answer is:
−10cos(10x)+constant
The answer (Indefinite)
[src]
/
| cos(10*x)
| sin(10*x) dx = C - ---------
| 10
/
∫sin(10x)dx=C−10cos(10x)
The graph
cos(3) cos(1)
- ------ + ------
10 10
10cos(1)−10cos(3)
=
cos(3) cos(1)
- ------ + ------
10 10
10cos(1)−10cos(3)
Use the examples entering the upper and lower limits of integration.