Mister Exam

Other calculators

Integral of sin(10*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3/10            
   /             
  |              
  |  sin(10*x) dx
  |              
 /               
1/10             
110310sin(10x)dx\int\limits_{\frac{1}{10}}^{\frac{3}{10}} \sin{\left(10 x \right)}\, dx
Integral(sin(10*x), (x, 1/10, 3/10))
Detail solution
  1. Let u=10xu = 10 x.

    Then let du=10dxdu = 10 dx and substitute du10\frac{du}{10}:

    sin(u)10du\int \frac{\sin{\left(u \right)}}{10}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du10\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{10}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)10- \frac{\cos{\left(u \right)}}{10}

    Now substitute uu back in:

    cos(10x)10- \frac{\cos{\left(10 x \right)}}{10}

  2. Add the constant of integration:

    cos(10x)10+constant- \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}


The answer is:

cos(10x)10+constant- \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            
 |                    cos(10*x)
 | sin(10*x) dx = C - ---------
 |                        10   
/                              
sin(10x)dx=Ccos(10x)10\int \sin{\left(10 x \right)}\, dx = C - \frac{\cos{\left(10 x \right)}}{10}
The graph
0.100.120.140.160.180.200.220.240.260.282-1
The answer [src]
  cos(3)   cos(1)
- ------ + ------
    10       10  
cos(1)10cos(3)10\frac{\cos{\left(1 \right)}}{10} - \frac{\cos{\left(3 \right)}}{10}
=
=
  cos(3)   cos(1)
- ------ + ------
    10       10  
cos(1)10cos(3)10\frac{\cos{\left(1 \right)}}{10} - \frac{\cos{\left(3 \right)}}{10}
-cos(3)/10 + cos(1)/10
Numerical answer [src]
0.153029480246859
0.153029480246859

    Use the examples entering the upper and lower limits of integration.