Mister Exam

Other calculators

Integral of cos(19x-2)-sin(10x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |  (cos(19*x - 2) - sin(10*x)) dx
 |                                
/                                 
0                                 
01(sin(10x)+cos(19x2))dx\int\limits_{0}^{1} \left(- \sin{\left(10 x \right)} + \cos{\left(19 x - 2 \right)}\right)\, dx
Integral(cos(19*x - 2) - sin(10*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin(10x))dx=sin(10x)dx\int \left(- \sin{\left(10 x \right)}\right)\, dx = - \int \sin{\left(10 x \right)}\, dx

      1. Let u=10xu = 10 x.

        Then let du=10dxdu = 10 dx and substitute du10\frac{du}{10}:

        sin(u)10du\int \frac{\sin{\left(u \right)}}{10}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          sin(u)du=sin(u)du10\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{10}

          1. The integral of sine is negative cosine:

            sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

          So, the result is: cos(u)10- \frac{\cos{\left(u \right)}}{10}

        Now substitute uu back in:

        cos(10x)10- \frac{\cos{\left(10 x \right)}}{10}

      So, the result is: cos(10x)10\frac{\cos{\left(10 x \right)}}{10}

    1. Let u=19x2u = 19 x - 2.

      Then let du=19dxdu = 19 dx and substitute du19\frac{du}{19}:

      cos(u)19du\int \frac{\cos{\left(u \right)}}{19}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        cos(u)du=cos(u)du19\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{19}

        1. The integral of cosine is sine:

          cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

        So, the result is: sin(u)19\frac{\sin{\left(u \right)}}{19}

      Now substitute uu back in:

      sin(19x2)19\frac{\sin{\left(19 x - 2 \right)}}{19}

    The result is: sin(19x2)19+cos(10x)10\frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}

  2. Now simplify:

    sin(19x2)19+cos(10x)10\frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}

  3. Add the constant of integration:

    sin(19x2)19+cos(10x)10+constant\frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}


The answer is:

sin(19x2)19+cos(10x)10+constant\frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                              
 |                                      cos(10*x)   sin(19*x - 2)
 | (cos(19*x - 2) - sin(10*x)) dx = C + --------- + -------------
 |                                          10            19     
/                                                                
(sin(10x)+cos(19x2))dx=C+sin(19x2)19+cos(10x)10\int \left(- \sin{\left(10 x \right)} + \cos{\left(19 x - 2 \right)}\right)\, dx = C + \frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
  1    cos(10)   sin(2)   sin(17)
- -- + ------- + ------ + -------
  10      10       19        19  
110+cos(10)10+sin(17)19+sin(2)19- \frac{1}{10} + \frac{\cos{\left(10 \right)}}{10} + \frac{\sin{\left(17 \right)}}{19} + \frac{\sin{\left(2 \right)}}{19}
=
=
  1    cos(10)   sin(2)   sin(17)
- -- + ------- + ------ + -------
  10      10       19        19  
110+cos(10)10+sin(17)19+sin(2)19- \frac{1}{10} + \frac{\cos{\left(10 \right)}}{10} + \frac{\sin{\left(17 \right)}}{19} + \frac{\sin{\left(2 \right)}}{19}
-1/10 + cos(10)/10 + sin(2)/19 + sin(17)/19
Numerical answer [src]
-0.186649261594691
-0.186649261594691

    Use the examples entering the upper and lower limits of integration.