Integral of cos(19x-2)-sin(10x) dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin(10x))dx=−∫sin(10x)dx
-
Let u=10x.
Then let du=10dx and substitute 10du:
∫10sin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫sin(u)du=10∫sin(u)du
-
The integral of sine is negative cosine:
∫sin(u)du=−cos(u)
So, the result is: −10cos(u)
Now substitute u back in:
−10cos(10x)
So, the result is: 10cos(10x)
-
Let u=19x−2.
Then let du=19dx and substitute 19du:
∫19cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=19∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 19sin(u)
Now substitute u back in:
19sin(19x−2)
The result is: 19sin(19x−2)+10cos(10x)
-
Now simplify:
19sin(19x−2)+10cos(10x)
-
Add the constant of integration:
19sin(19x−2)+10cos(10x)+constant
The answer is:
19sin(19x−2)+10cos(10x)+constant
The answer (Indefinite)
[src]
/
| cos(10*x) sin(19*x - 2)
| (cos(19*x - 2) - sin(10*x)) dx = C + --------- + -------------
| 10 19
/
∫(−sin(10x)+cos(19x−2))dx=C+19sin(19x−2)+10cos(10x)
The graph
1 cos(10) sin(2) sin(17)
- -- + ------- + ------ + -------
10 10 19 19
−101+10cos(10)+19sin(17)+19sin(2)
=
1 cos(10) sin(2) sin(17)
- -- + ------- + ------ + -------
10 10 19 19
−101+10cos(10)+19sin(17)+19sin(2)
-1/10 + cos(10)/10 + sin(2)/19 + sin(17)/19
Use the examples entering the upper and lower limits of integration.