1 / | | (cos(19*x - 2) - sin(10*x)) dx | / 0
Integral(cos(19*x - 2) - sin(10*x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Now substitute back in:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | cos(10*x) sin(19*x - 2) | (cos(19*x - 2) - sin(10*x)) dx = C + --------- + ------------- | 10 19 /
1 cos(10) sin(2) sin(17) - -- + ------- + ------ + ------- 10 10 19 19
=
1 cos(10) sin(2) sin(17) - -- + ------- + ------ + ------- 10 10 19 19
-1/10 + cos(10)/10 + sin(2)/19 + sin(17)/19
Use the examples entering the upper and lower limits of integration.