Mister Exam

Other calculators

Integral of cos(19x-2)-sin(10x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                               
  /                               
 |                                
 |  (cos(19*x - 2) - sin(10*x)) dx
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \left(- \sin{\left(10 x \right)} + \cos{\left(19 x - 2 \right)}\right)\, dx$$
Integral(cos(19*x - 2) - sin(10*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                              
 |                                      cos(10*x)   sin(19*x - 2)
 | (cos(19*x - 2) - sin(10*x)) dx = C + --------- + -------------
 |                                          10            19     
/                                                                
$$\int \left(- \sin{\left(10 x \right)} + \cos{\left(19 x - 2 \right)}\right)\, dx = C + \frac{\sin{\left(19 x - 2 \right)}}{19} + \frac{\cos{\left(10 x \right)}}{10}$$
The graph
The answer [src]
  1    cos(10)   sin(2)   sin(17)
- -- + ------- + ------ + -------
  10      10       19        19  
$$- \frac{1}{10} + \frac{\cos{\left(10 \right)}}{10} + \frac{\sin{\left(17 \right)}}{19} + \frac{\sin{\left(2 \right)}}{19}$$
=
=
  1    cos(10)   sin(2)   sin(17)
- -- + ------- + ------ + -------
  10      10       19        19  
$$- \frac{1}{10} + \frac{\cos{\left(10 \right)}}{10} + \frac{\sin{\left(17 \right)}}{19} + \frac{\sin{\left(2 \right)}}{19}$$
-1/10 + cos(10)/10 + sin(2)/19 + sin(17)/19
Numerical answer [src]
-0.186649261594691
-0.186649261594691

    Use the examples entering the upper and lower limits of integration.