Integral of cos^7xsin^10x dx
The solution
Detail solution
-
Rewrite the integrand:
sin10(x)cos7(x)=(1−sin2(x))3sin10(x)cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(−u16+3u14−3u12+u10)du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−u16)du=−∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
So, the result is: −17u17
-
The integral of a constant times a function is the constant times the integral of the function:
∫3u14du=3∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
So, the result is: 5u15
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3u12)du=−3∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
So, the result is: −133u13
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
The result is: −17u17+5u15−133u13+11u11
Now substitute u back in:
−17sin17(x)+5sin15(x)−133sin13(x)+11sin11(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))3sin10(x)cos(x)=−sin16(x)cos(x)+3sin14(x)cos(x)−3sin12(x)cos(x)+sin10(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin16(x)cos(x))dx=−∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: −17sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin14(x)cos(x)dx=3∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: 5sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin12(x)cos(x))dx=−3∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: −133sin13(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
The result is: −17sin17(x)+5sin15(x)−133sin13(x)+11sin11(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))3sin10(x)cos(x)=−sin16(x)cos(x)+3sin14(x)cos(x)−3sin12(x)cos(x)+sin10(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin16(x)cos(x))dx=−∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: −17sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫3sin14(x)cos(x)dx=3∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: 5sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3sin12(x)cos(x))dx=−3∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: −133sin13(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
The result is: −17sin17(x)+5sin15(x)−133sin13(x)+11sin11(x)
-
Now simplify:
12155(−715sin6(x)+2431sin4(x)−2805sin2(x)+1105)sin11(x)
-
Add the constant of integration:
12155(−715sin6(x)+2431sin4(x)−2805sin2(x)+1105)sin11(x)+constant
The answer is:
12155(−715sin6(x)+2431sin4(x)−2805sin2(x)+1105)sin11(x)+constant
The answer (Indefinite)
[src]
/
| 13 17 15 11
| 7 10 3*sin (x) sin (x) sin (x) sin (x)
| cos (x)*sin (x) dx = C - ---------- - -------- + -------- + --------
| 13 17 5 11
/
∫sin10(x)cos7(x)dx=C−17sin17(x)+5sin15(x)−133sin13(x)+11sin11(x)
The graph
13 17 15 11
3*sin (1) sin (1) sin (1) sin (1)
- ---------- - -------- + -------- + --------
13 17 5 11
−133sin13(1)−17sin17(1)+11sin11(1)+5sin15(1)
=
13 17 15 11
3*sin (1) sin (1) sin (1) sin (1)
- ---------- - -------- + -------- + --------
13 17 5 11
−133sin13(1)−17sin17(1)+11sin11(1)+5sin15(1)
-3*sin(1)^13/13 - sin(1)^17/17 + sin(1)^15/5 + sin(1)^11/11
Use the examples entering the upper and lower limits of integration.