Mister Exam

Other calculators

Integral of cos^7xsin^10x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |     7       10      
 |  cos (x)*sin  (x) dx
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \sin^{10}{\left(x \right)} \cos^{7}{\left(x \right)}\, dx$$
Integral(cos(x)^7*sin(x)^10, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is when :

          So, the result is:

        1. The integral of is when :

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                     
 |                                13         17         15         11   
 |    7       10             3*sin  (x)   sin  (x)   sin  (x)   sin  (x)
 | cos (x)*sin  (x) dx = C - ---------- - -------- + -------- + --------
 |                               13          17         5          11   
/                                                                       
$$\int \sin^{10}{\left(x \right)} \cos^{7}{\left(x \right)}\, dx = C - \frac{\sin^{17}{\left(x \right)}}{17} + \frac{\sin^{15}{\left(x \right)}}{5} - \frac{3 \sin^{13}{\left(x \right)}}{13} + \frac{\sin^{11}{\left(x \right)}}{11}$$
The graph
The answer [src]
       13         17         15         11   
  3*sin  (1)   sin  (1)   sin  (1)   sin  (1)
- ---------- - -------- + -------- + --------
      13          17         5          11   
$$- \frac{3 \sin^{13}{\left(1 \right)}}{13} - \frac{\sin^{17}{\left(1 \right)}}{17} + \frac{\sin^{11}{\left(1 \right)}}{11} + \frac{\sin^{15}{\left(1 \right)}}{5}$$
=
=
       13         17         15         11   
  3*sin  (1)   sin  (1)   sin  (1)   sin  (1)
- ---------- - -------- + -------- + --------
      13          17         5          11   
$$- \frac{3 \sin^{13}{\left(1 \right)}}{13} - \frac{\sin^{17}{\left(1 \right)}}{17} + \frac{\sin^{11}{\left(1 \right)}}{11} + \frac{\sin^{15}{\left(1 \right)}}{5}$$
-3*sin(1)^13/13 - sin(1)^17/17 + sin(1)^15/5 + sin(1)^11/11
Numerical answer [src]
0.00103319601406097
0.00103319601406097

    Use the examples entering the upper and lower limits of integration.