Integral of sin10x*sin7x dx
The solution
Detail solution
-
Rewrite the integrand:
sin(7x)sin(10x)=−32768sin16(x)cos(x)+122880sin14(x)cos(x)−186368sin12(x)cos(x)+146432sin10(x)cos(x)−63360sin8(x)cos(x)+14784sin6(x)cos(x)−1680sin4(x)cos(x)+70sin2(x)cos(x)
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32768sin16(x)cos(x))dx=−32768∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: −1732768sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫122880sin14(x)cos(x)dx=122880∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: 8192sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−186368sin12(x)cos(x))dx=−186368∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: −14336sin13(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫146432sin10(x)cos(x)dx=146432∫sin10(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
So, the result is: 13312sin11(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−63360sin8(x)cos(x))dx=−63360∫sin8(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9sin9(x)
So, the result is: −7040sin9(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫14784sin6(x)cos(x)dx=14784∫sin6(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u6du
-
The integral of un is n+1un+1 when n=−1:
∫u6du=7u7
Now substitute u back in:
7sin7(x)
So, the result is: 2112sin7(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−1680sin4(x)cos(x))dx=−1680∫sin4(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(x)
So, the result is: −336sin5(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫70sin2(x)cos(x)dx=70∫sin2(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(x)
So, the result is: 370sin3(x)
The result is: −1732768sin17(x)+8192sin15(x)−14336sin13(x)+13312sin11(x)−7040sin9(x)+2112sin7(x)−336sin5(x)+370sin3(x)
-
Now simplify:
512(−49152sin14(x)+208896sin12(x)−365568sin10(x)+339456sin8(x)−179520sin6(x)+53856sin4(x)−8568sin2(x)+595)sin3(x)
-
Add the constant of integration:
512(−49152sin14(x)+208896sin12(x)−365568sin10(x)+339456sin8(x)−179520sin6(x)+53856sin4(x)−8568sin2(x)+595)sin3(x)+constant
The answer is:
512(−49152sin14(x)+208896sin12(x)−365568sin10(x)+339456sin8(x)−179520sin6(x)+53856sin4(x)−8568sin2(x)+595)sin3(x)+constant
The answer (Indefinite)
[src]
/ 17 3
| 13 9 5 7 15 11 32768*sin (x) 70*sin (x)
| sin(10*x)*sin(7*x) dx = C - 14336*sin (x) - 7040*sin (x) - 336*sin (x) + 2112*sin (x) + 8192*sin (x) + 13312*sin (x) - -------------- + ----------
| 17 3
/
∫sin(7x)sin(10x)dx=C−1732768sin17(x)+8192sin15(x)−14336sin13(x)+13312sin11(x)−7040sin9(x)+2112sin7(x)−336sin5(x)+370sin3(x)
The graph
Use the examples entering the upper and lower limits of integration.