Mister Exam

Integral of sin10x*sin7x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                      
  /                      
 |                       
 |  sin(10*x)*sin(7*x) dx
 |                       
/                        
0                        
00sin(7x)sin(10x)dx\int\limits_{0}^{0} \sin{\left(7 x \right)} \sin{\left(10 x \right)}\, dx
Integral(sin(10*x)*sin(7*x), (x, 0, 0))
Detail solution
  1. Rewrite the integrand:

    sin(7x)sin(10x)=32768sin16(x)cos(x)+122880sin14(x)cos(x)186368sin12(x)cos(x)+146432sin10(x)cos(x)63360sin8(x)cos(x)+14784sin6(x)cos(x)1680sin4(x)cos(x)+70sin2(x)cos(x)\sin{\left(7 x \right)} \sin{\left(10 x \right)} = - 32768 \sin^{16}{\left(x \right)} \cos{\left(x \right)} + 122880 \sin^{14}{\left(x \right)} \cos{\left(x \right)} - 186368 \sin^{12}{\left(x \right)} \cos{\left(x \right)} + 146432 \sin^{10}{\left(x \right)} \cos{\left(x \right)} - 63360 \sin^{8}{\left(x \right)} \cos{\left(x \right)} + 14784 \sin^{6}{\left(x \right)} \cos{\left(x \right)} - 1680 \sin^{4}{\left(x \right)} \cos{\left(x \right)} + 70 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (32768sin16(x)cos(x))dx=32768sin16(x)cos(x)dx\int \left(- 32768 \sin^{16}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 32768 \int \sin^{16}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u16du\int u^{16}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u16du=u1717\int u^{16}\, du = \frac{u^{17}}{17}

        Now substitute uu back in:

        sin17(x)17\frac{\sin^{17}{\left(x \right)}}{17}

      So, the result is: 32768sin17(x)17- \frac{32768 \sin^{17}{\left(x \right)}}{17}

    1. The integral of a constant times a function is the constant times the integral of the function:

      122880sin14(x)cos(x)dx=122880sin14(x)cos(x)dx\int 122880 \sin^{14}{\left(x \right)} \cos{\left(x \right)}\, dx = 122880 \int \sin^{14}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u14du\int u^{14}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u14du=u1515\int u^{14}\, du = \frac{u^{15}}{15}

        Now substitute uu back in:

        sin15(x)15\frac{\sin^{15}{\left(x \right)}}{15}

      So, the result is: 8192sin15(x)8192 \sin^{15}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (186368sin12(x)cos(x))dx=186368sin12(x)cos(x)dx\int \left(- 186368 \sin^{12}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 186368 \int \sin^{12}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u12du\int u^{12}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u12du=u1313\int u^{12}\, du = \frac{u^{13}}{13}

        Now substitute uu back in:

        sin13(x)13\frac{\sin^{13}{\left(x \right)}}{13}

      So, the result is: 14336sin13(x)- 14336 \sin^{13}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      146432sin10(x)cos(x)dx=146432sin10(x)cos(x)dx\int 146432 \sin^{10}{\left(x \right)} \cos{\left(x \right)}\, dx = 146432 \int \sin^{10}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u10du\int u^{10}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u10du=u1111\int u^{10}\, du = \frac{u^{11}}{11}

        Now substitute uu back in:

        sin11(x)11\frac{\sin^{11}{\left(x \right)}}{11}

      So, the result is: 13312sin11(x)13312 \sin^{11}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (63360sin8(x)cos(x))dx=63360sin8(x)cos(x)dx\int \left(- 63360 \sin^{8}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 63360 \int \sin^{8}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u8du\int u^{8}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u8du=u99\int u^{8}\, du = \frac{u^{9}}{9}

        Now substitute uu back in:

        sin9(x)9\frac{\sin^{9}{\left(x \right)}}{9}

      So, the result is: 7040sin9(x)- 7040 \sin^{9}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      14784sin6(x)cos(x)dx=14784sin6(x)cos(x)dx\int 14784 \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx = 14784 \int \sin^{6}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u6du\int u^{6}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u6du=u77\int u^{6}\, du = \frac{u^{7}}{7}

        Now substitute uu back in:

        sin7(x)7\frac{\sin^{7}{\left(x \right)}}{7}

      So, the result is: 2112sin7(x)2112 \sin^{7}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (1680sin4(x)cos(x))dx=1680sin4(x)cos(x)dx\int \left(- 1680 \sin^{4}{\left(x \right)} \cos{\left(x \right)}\right)\, dx = - 1680 \int \sin^{4}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u4du\int u^{4}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

        Now substitute uu back in:

        sin5(x)5\frac{\sin^{5}{\left(x \right)}}{5}

      So, the result is: 336sin5(x)- 336 \sin^{5}{\left(x \right)}

    1. The integral of a constant times a function is the constant times the integral of the function:

      70sin2(x)cos(x)dx=70sin2(x)cos(x)dx\int 70 \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = 70 \int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx

      1. Let u=sin(x)u = \sin{\left(x \right)}.

        Then let du=cos(x)dxdu = \cos{\left(x \right)} dx and substitute dudu:

        u2du\int u^{2}\, du

        1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

          u2du=u33\int u^{2}\, du = \frac{u^{3}}{3}

        Now substitute uu back in:

        sin3(x)3\frac{\sin^{3}{\left(x \right)}}{3}

      So, the result is: 70sin3(x)3\frac{70 \sin^{3}{\left(x \right)}}{3}

    The result is: 32768sin17(x)17+8192sin15(x)14336sin13(x)+13312sin11(x)7040sin9(x)+2112sin7(x)336sin5(x)+70sin3(x)3- \frac{32768 \sin^{17}{\left(x \right)}}{17} + 8192 \sin^{15}{\left(x \right)} - 14336 \sin^{13}{\left(x \right)} + 13312 \sin^{11}{\left(x \right)} - 7040 \sin^{9}{\left(x \right)} + 2112 \sin^{7}{\left(x \right)} - 336 \sin^{5}{\left(x \right)} + \frac{70 \sin^{3}{\left(x \right)}}{3}

  3. Now simplify:

    2(49152sin14(x)+208896sin12(x)365568sin10(x)+339456sin8(x)179520sin6(x)+53856sin4(x)8568sin2(x)+595)sin3(x)51\frac{2 \left(- 49152 \sin^{14}{\left(x \right)} + 208896 \sin^{12}{\left(x \right)} - 365568 \sin^{10}{\left(x \right)} + 339456 \sin^{8}{\left(x \right)} - 179520 \sin^{6}{\left(x \right)} + 53856 \sin^{4}{\left(x \right)} - 8568 \sin^{2}{\left(x \right)} + 595\right) \sin^{3}{\left(x \right)}}{51}

  4. Add the constant of integration:

    2(49152sin14(x)+208896sin12(x)365568sin10(x)+339456sin8(x)179520sin6(x)+53856sin4(x)8568sin2(x)+595)sin3(x)51+constant\frac{2 \left(- 49152 \sin^{14}{\left(x \right)} + 208896 \sin^{12}{\left(x \right)} - 365568 \sin^{10}{\left(x \right)} + 339456 \sin^{8}{\left(x \right)} - 179520 \sin^{6}{\left(x \right)} + 53856 \sin^{4}{\left(x \right)} - 8568 \sin^{2}{\left(x \right)} + 595\right) \sin^{3}{\left(x \right)}}{51}+ \mathrm{constant}


The answer is:

2(49152sin14(x)+208896sin12(x)365568sin10(x)+339456sin8(x)179520sin6(x)+53856sin4(x)8568sin2(x)+595)sin3(x)51+constant\frac{2 \left(- 49152 \sin^{14}{\left(x \right)} + 208896 \sin^{12}{\left(x \right)} - 365568 \sin^{10}{\left(x \right)} + 339456 \sin^{8}{\left(x \right)} - 179520 \sin^{6}{\left(x \right)} + 53856 \sin^{4}{\left(x \right)} - 8568 \sin^{2}{\left(x \right)} + 595\right) \sin^{3}{\left(x \right)}}{51}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                                                                                   17            3   
 |                                      13              9             5              7              15               11      32768*sin  (x)   70*sin (x)
 | sin(10*x)*sin(7*x) dx = C - 14336*sin  (x) - 7040*sin (x) - 336*sin (x) + 2112*sin (x) + 8192*sin  (x) + 13312*sin  (x) - -------------- + ----------
 |                                                                                                                                 17             3     
/                                                                                                                                                       
sin(7x)sin(10x)dx=C32768sin17(x)17+8192sin15(x)14336sin13(x)+13312sin11(x)7040sin9(x)+2112sin7(x)336sin5(x)+70sin3(x)3\int \sin{\left(7 x \right)} \sin{\left(10 x \right)}\, dx = C - \frac{32768 \sin^{17}{\left(x \right)}}{17} + 8192 \sin^{15}{\left(x \right)} - 14336 \sin^{13}{\left(x \right)} + 13312 \sin^{11}{\left(x \right)} - 7040 \sin^{9}{\left(x \right)} + 2112 \sin^{7}{\left(x \right)} - 336 \sin^{5}{\left(x \right)} + \frac{70 \sin^{3}{\left(x \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.9001
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.