Mister Exam

Other calculators

Integral of 1/x-sin10x/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  /1   sin(10*x)\   
 |  |- - ---------| dx
 |  \x       x    /   
 |                    
/                     
0                     
01(sin(10x)x+1x)dx\int\limits_{0}^{1} \left(- \frac{\sin{\left(10 x \right)}}{x} + \frac{1}{x}\right)\, dx
Integral(1/x - sin(10*x)/x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      (sin(10x)x)dx=sin(10x)xdx\int \left(- \frac{\sin{\left(10 x \right)}}{x}\right)\, dx = - \int \frac{\sin{\left(10 x \right)}}{x}\, dx

        SiRule(a=10, b=0, context=sin(10*x)/x, symbol=x)

      So, the result is: Si(10x)- \operatorname{Si}{\left(10 x \right)}

    1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

    The result is: log(x)Si(10x)\log{\left(x \right)} - \operatorname{Si}{\left(10 x \right)}

  2. Add the constant of integration:

    log(x)Si(10x)+constant\log{\left(x \right)} - \operatorname{Si}{\left(10 x \right)}+ \mathrm{constant}


The answer is:

log(x)Si(10x)+constant\log{\left(x \right)} - \operatorname{Si}{\left(10 x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                          
 |                                           
 | /1   sin(10*x)\                           
 | |- - ---------| dx = C - Si(10*x) + log(x)
 | \x       x    /                           
 |                                           
/                                            
(sin(10x)x+1x)dx=C+log(x)Si(10x)\int \left(- \frac{\sin{\left(10 x \right)}}{x} + \frac{1}{x}\right)\, dx = C + \log{\left(x \right)} - \operatorname{Si}{\left(10 x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-500010000
The answer [src]
oo - Si(10)
Si(10)+- \operatorname{Si}{\left(10 \right)} + \infty
=
=
oo - Si(10)
Si(10)+- \operatorname{Si}{\left(10 \right)} + \infty
oo - Si(10)
Numerical answer [src]
42.432098539774
42.432098539774

    Use the examples entering the upper and lower limits of integration.