Integral of 1/x-sin10x/x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−xsin(10x))dx=−∫xsin(10x)dx
SiRule(a=10, b=0, context=sin(10*x)/x, symbol=x)
So, the result is: −Si(10x)
-
The integral of x1 is log(x).
The result is: log(x)−Si(10x)
-
Add the constant of integration:
log(x)−Si(10x)+constant
The answer is:
log(x)−Si(10x)+constant
The answer (Indefinite)
[src]
/
|
| /1 sin(10*x)\
| |- - ---------| dx = C - Si(10*x) + log(x)
| \x x /
|
/
∫(−xsin(10x)+x1)dx=C+log(x)−Si(10x)
The graph
−Si(10)+∞
=
−Si(10)+∞
Use the examples entering the upper and lower limits of integration.