Integral of sin^10xcos^9x dx
The solution
Detail solution
-
Rewrite the integrand:
sin10(x)cos9(x)=(1−sin2(x))4sin10(x)cos(x)
-
There are multiple ways to do this integral.
Method #1
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫(u18−4u16+6u14−4u12+u10)du
-
Integrate term-by-term:
-
The integral of un is n+1un+1 when n=−1:
∫u18du=19u19
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u16)du=−4∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
So, the result is: −174u17
-
The integral of a constant times a function is the constant times the integral of the function:
∫6u14du=6∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
So, the result is: 52u15
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4u12)du=−4∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
So, the result is: −134u13
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
The result is: 19u19−174u17+52u15−134u13+11u11
Now substitute u back in:
19sin19(x)−174sin17(x)+52sin15(x)−134sin13(x)+11sin11(x)
Method #2
-
Rewrite the integrand:
(1−sin2(x))4sin10(x)cos(x)=sin18(x)cos(x)−4sin16(x)cos(x)+6sin14(x)cos(x)−4sin12(x)cos(x)+sin10(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u18du
-
The integral of un is n+1un+1 when n=−1:
∫u18du=19u19
Now substitute u back in:
19sin19(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin16(x)cos(x))dx=−4∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: −174sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin14(x)cos(x)dx=6∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: 52sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin12(x)cos(x))dx=−4∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: −134sin13(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
The result is: 19sin19(x)−174sin17(x)+52sin15(x)−134sin13(x)+11sin11(x)
Method #3
-
Rewrite the integrand:
(1−sin2(x))4sin10(x)cos(x)=sin18(x)cos(x)−4sin16(x)cos(x)+6sin14(x)cos(x)−4sin12(x)cos(x)+sin10(x)cos(x)
-
Integrate term-by-term:
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u18du
-
The integral of un is n+1un+1 when n=−1:
∫u18du=19u19
Now substitute u back in:
19sin19(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin16(x)cos(x))dx=−4∫sin16(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u16du
-
The integral of un is n+1un+1 when n=−1:
∫u16du=17u17
Now substitute u back in:
17sin17(x)
So, the result is: −174sin17(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫6sin14(x)cos(x)dx=6∫sin14(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u14du
-
The integral of un is n+1un+1 when n=−1:
∫u14du=15u15
Now substitute u back in:
15sin15(x)
So, the result is: 52sin15(x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−4sin12(x)cos(x))dx=−4∫sin12(x)cos(x)dx
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u12du
-
The integral of un is n+1un+1 when n=−1:
∫u12du=13u13
Now substitute u back in:
13sin13(x)
So, the result is: −134sin13(x)
-
Let u=sin(x).
Then let du=cos(x)dx and substitute du:
∫u10du
-
The integral of un is n+1un+1 when n=−1:
∫u10du=11u11
Now substitute u back in:
11sin11(x)
The result is: 19sin19(x)−174sin17(x)+52sin15(x)−134sin13(x)+11sin11(x)
-
Now simplify:
230945(12155sin8(x)−54340sin6(x)+92378sin4(x)−71060sin2(x)+20995)sin11(x)
-
Add the constant of integration:
230945(12155sin8(x)−54340sin6(x)+92378sin4(x)−71060sin2(x)+20995)sin11(x)+constant
The answer is:
230945(12155sin8(x)−54340sin6(x)+92378sin4(x)−71060sin2(x)+20995)sin11(x)+constant
The answer (Indefinite)
[src]
/
| 13 17 11 19 15
| 10 9 4*sin (x) 4*sin (x) sin (x) sin (x) 2*sin (x)
| sin (x)*cos (x) dx = C - ---------- - ---------- + -------- + -------- + ----------
| 13 17 11 19 5
/
∫sin10(x)cos9(x)dx=C+19sin19(x)−174sin17(x)+52sin15(x)−134sin13(x)+11sin11(x)
The graph
230945128
=
230945128
Use the examples entering the upper and lower limits of integration.