2*pi / | | sin(n*x) dx | / 3*pi ---- 2
Integral(sin(n*x), (x, 3*pi/2, 2*pi))
/ //-cos(n*x) \ | ||---------- for n != 0| | sin(n*x) dx = C + |< n | | || | / \\ 0 otherwise /
/ /3*pi*n\ |cos|------| | \ 2 / cos(2*pi*n) <----------- - ----------- for And(n > -oo, n < oo, n != 0) | n n | \ 0 otherwise
=
/ /3*pi*n\ |cos|------| | \ 2 / cos(2*pi*n) <----------- - ----------- for And(n > -oo, n < oo, n != 0) | n n | \ 0 otherwise
Piecewise((cos(3*pi*n/2)/n - cos(2*pi*n)/n, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.