1 / | | 3*sin(x)*sin(n*x) dx | / 0
Integral((3*sin(x))*sin(n*x), (x, 0, 1))
// 2 2 \
|| 3*x*cos (x) 3*x*sin (x) 3*cos(x)*sin(x) |
||- ----------- - ----------- + --------------- for n = -1|
|| 2 2 2 |
|| |
/ || 2 2 |
| || 3*cos(x)*sin(x) 3*x*cos (x) 3*x*sin (x) |
| 3*sin(x)*sin(n*x) dx = C + |<- --------------- + ----------- + ----------- for n = 1 |
| || 2 2 2 |
/ || |
|| 3*cos(x)*sin(n*x) 3*n*cos(n*x)*sin(x) |
|| ----------------- - ------------------- otherwise |
|| 2 2 |
|| -1 + n -1 + n |
\\ /
/ 2 2 | 3*cos (1) 3*sin (1) 3*cos(1)*sin(1) |- --------- - --------- + --------------- for n = -1 | 2 2 2 | | 2 2 | 3*cos (1) 3*sin (1) 3*cos(1)*sin(1) < --------- + --------- - --------------- for n = 1 | 2 2 2 | | 3*cos(1)*sin(n) 3*n*cos(n)*sin(1) | --------------- - ----------------- otherwise | 2 2 | -1 + n -1 + n \
=
/ 2 2 | 3*cos (1) 3*sin (1) 3*cos(1)*sin(1) |- --------- - --------- + --------------- for n = -1 | 2 2 2 | | 2 2 | 3*cos (1) 3*sin (1) 3*cos(1)*sin(1) < --------- + --------- - --------------- for n = 1 | 2 2 2 | | 3*cos(1)*sin(n) 3*n*cos(n)*sin(1) | --------------- - ----------------- otherwise | 2 2 | -1 + n -1 + n \
Piecewise((-3*cos(1)^2/2 - 3*sin(1)^2/2 + 3*cos(1)*sin(1)/2, n = -1), (3*cos(1)^2/2 + 3*sin(1)^2/2 - 3*cos(1)*sin(1)/2, n = 1), (3*cos(1)*sin(n)/(-1 + n^2) - 3*n*cos(n)*sin(1)/(-1 + n^2), True))
Use the examples entering the upper and lower limits of integration.