Integral of (4-9x)*sin(nx) dx
The solution
The answer (Indefinite)
[src]
// 0 for n = 0\
|| |
/ // 0 for n = 0\ || //sin(n*x) \ | // 0 for n = 0\
| || | || ||-------- for n != 0| | || |
| (4 - 9*x)*sin(n*x) dx = C + 4*|<-cos(n*x) | + 9*|<-|< n | | - 9*x*|<-cos(n*x) |
| ||---------- otherwise| || || | | ||---------- otherwise|
/ \\ n / || \\ x otherwise / | \\ n /
||------------------------- otherwise|
\\ n /
∫(4−9x)sin(nx)dx=C−9x({0−ncos(nx)forn=0otherwise)+9⎩⎨⎧0−n{nsin(nx)xforn=0otherwiseforn=0otherwise+4({0−ncos(nx)forn=0otherwise)
/4 9*sin(pi*n) 4*cos(pi*n) 9*pi*cos(pi*n)
|- - ----------- - ----------- + -------------- for And(n > -oo, n < oo, n != 0)
|n 2 n n
< n
|
| 0 otherwise
\
{−n4cos(πn)+n9πcos(πn)+n4−n29sin(πn)0forn>−∞∧n<∞∧n=0otherwise
=
/4 9*sin(pi*n) 4*cos(pi*n) 9*pi*cos(pi*n)
|- - ----------- - ----------- + -------------- for And(n > -oo, n < oo, n != 0)
|n 2 n n
< n
|
| 0 otherwise
\
{−n4cos(πn)+n9πcos(πn)+n4−n29sin(πn)0forn>−∞∧n<∞∧n=0otherwise
Piecewise((4/n - 9*sin(pi*n)/n^2 - 4*cos(pi*n)/n + 9*pi*cos(pi*n)/n, (n > -oo)∧(n < oo)∧(Ne(n, 0))), (0, True))
Use the examples entering the upper and lower limits of integration.