Integral of sin(x)*sin(nx) dx
The solution
The answer (Indefinite)
[src]
// 2 2 \
||cos(x)*sin(x) x*cos (x) x*sin (x) |
||------------- - --------- - --------- for n = -1|
|| 2 2 2 |
|| |
/ || 2 2 |
| ||x*cos (x) x*sin (x) cos(x)*sin(x) |
| sin(x)*sin(n*x) dx = C + |<--------- + --------- - ------------- for n = 1 |
| || 2 2 2 |
/ || |
|| cos(x)*sin(n*x) n*cos(n*x)*sin(x) |
|| --------------- - ----------------- otherwise |
|| 2 2 |
|| -1 + n -1 + n |
\\ /
∫sin(x)sin(nx)dx=C+⎩⎨⎧−2xsin2(x)−2xcos2(x)+2sin(x)cos(x)2xsin2(x)+2xcos2(x)−2sin(x)cos(x)−n2−1nsin(x)cos(nx)+n2−1sin(nx)cos(x)forn=−1forn=1otherwise
Use the examples entering the upper and lower limits of integration.