$$\lim_{n \to \infty} \sin{\left(n x \right)} = \sin{\left(\tilde{\infty} x \right)}$$ $$\lim_{n \to 0^-} \sin{\left(n x \right)} = 0$$ More at n→0 from the left $$\lim_{n \to 0^+} \sin{\left(n x \right)} = 0$$ More at n→0 from the right $$\lim_{n \to 1^-} \sin{\left(n x \right)} = \sin{\left(x \right)}$$ More at n→1 from the left $$\lim_{n \to 1^+} \sin{\left(n x \right)} = \sin{\left(x \right)}$$ More at n→1 from the right $$\lim_{n \to -\infty} \sin{\left(n x \right)} = \tilde{\infty} x \cos{\left(\tilde{\infty} x \right)}$$ More at n→-oo