Mister Exam

Other calculators

Integral of e^(x*y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   x*y   
 |  E    dx
 |         
/          
0          
$$\int\limits_{0}^{1} e^{x y}\, dx$$
Integral(E^(x*y), (x, 0, 1))
The answer (Indefinite) [src]
  /              // x*y            \
 |               ||e               |
 |  x*y          ||----  for y != 0|
 | E    dx = C + |< y              |
 |               ||                |
/                || x    otherwise |
                 \\                /
$$\int e^{x y}\, dx = C + \begin{cases} \frac{e^{x y}}{y} & \text{for}\: y \neq 0 \\x & \text{otherwise} \end{cases}$$
The answer [src]
/       y                                  
|  1   e                                   
|- - + --  for And(y > -oo, y < oo, y != 0)
<  y   y                                   
|                                          
|   1                 otherwise            
\                                          
$$\begin{cases} \frac{e^{y}}{y} - \frac{1}{y} & \text{for}\: y > -\infty \wedge y < \infty \wedge y \neq 0 \\1 & \text{otherwise} \end{cases}$$
=
=
/       y                                  
|  1   e                                   
|- - + --  for And(y > -oo, y < oo, y != 0)
<  y   y                                   
|                                          
|   1                 otherwise            
\                                          
$$\begin{cases} \frac{e^{y}}{y} - \frac{1}{y} & \text{for}\: y > -\infty \wedge y < \infty \wedge y \neq 0 \\1 & \text{otherwise} \end{cases}$$
Piecewise((-1/y + exp(y)/y, (y > -oo)∧(y < oo)∧(Ne(y, 0))), (1, True))

    Use the examples entering the upper and lower limits of integration.