Mister Exam

Integral of sin(3x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  sin(3*x + 5) dx
 |                 
/                  
0                  
01sin(3x+5)dx\int\limits_{0}^{1} \sin{\left(3 x + 5 \right)}\, dx
Detail solution
  1. Let u=3x+5u = 3 x + 5.

    Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

    sin(u)9du\int \frac{\sin{\left(u \right)}}{9}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)3du=sin(u)du3\int \frac{\sin{\left(u \right)}}{3}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

    Now substitute uu back in:

    cos(3x+5)3- \frac{\cos{\left(3 x + 5 \right)}}{3}

  2. Now simplify:

    cos(3x+5)3- \frac{\cos{\left(3 x + 5 \right)}}{3}

  3. Add the constant of integration:

    cos(3x+5)3+constant- \frac{\cos{\left(3 x + 5 \right)}}{3}+ \mathrm{constant}


The answer is:

cos(3x+5)3+constant- \frac{\cos{\left(3 x + 5 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       cos(3*x + 5)
 | sin(3*x + 5) dx = C - ------------
 |                            3      
/                                    
cos(3x+5)3-{{\cos \left(3\,x+5\right)}\over{3}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  cos(8)   cos(5)
- ------ + ------
    3        3   
cos5cos83{{\cos 5-\cos 8}\over{3}}
=
=
  cos(8)   cos(5)
- ------ + ------
    3        3   
cos(8)3+cos(5)3- \frac{\cos{\left(8 \right)}}{3} + \frac{\cos{\left(5 \right)}}{3}
Numerical answer [src]
0.143054073090613
0.143054073090613
The graph
Integral of sin(3x+5) dx

    Use the examples entering the upper and lower limits of integration.