Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of dx/(1+x^2) Integral of dx/(1+x^2)
  • Integral of exp(y) Integral of exp(y)
  • Integral of -exp(-x) Integral of -exp(-x)
  • Integral of ln(x)/√x
  • Identical expressions

  • (seven *sin^3x+ five)/sin^2x
  • (7 multiply by sinus of cubed x plus 5) divide by sinus of squared x
  • (seven multiply by sinus of cubed x plus five) divide by sinus of squared x
  • (7*sin3x+5)/sin2x
  • 7*sin3x+5/sin2x
  • (7*sin³x+5)/sin²x
  • (7*sin to the power of 3x+5)/sin to the power of 2x
  • (7sin^3x+5)/sin^2x
  • (7sin3x+5)/sin2x
  • 7sin3x+5/sin2x
  • 7sin^3x+5/sin^2x
  • (7*sin^3x+5) divide by sin^2x
  • (7*sin^3x+5)/sin^2xdx
  • Similar expressions

  • (7*sin^3x-5)/sin^2x

Integral of (7*sin^3x+5)/sin^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |       3          
 |  7*sin (x) + 5   
 |  ------------- dx
 |        2         
 |     sin (x)      
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{7 \sin^{3}{\left(x \right)} + 5}{\sin^{2}{\left(x \right)}}\, dx$$
Integral((7*sin(x)^3 + 5)/sin(x)^2, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                          
 |                                           
 |      3                                    
 | 7*sin (x) + 5                     5*cos(x)
 | ------------- dx = C - 7*cos(x) - --------
 |       2                            sin(x) 
 |    sin (x)                                
 |                                           
/                                            
$$\int \frac{7 \sin^{3}{\left(x \right)} + 5}{\sin^{2}{\left(x \right)}}\, dx = C - 7 \cos{\left(x \right)} - \frac{5 \cos{\left(x \right)}}{\sin{\left(x \right)}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
6.89661838974298e+19
6.89661838974298e+19

    Use the examples entering the upper and lower limits of integration.