Mister Exam

Other calculators

Integral of sin(3*x+5)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                
  /                
 |                 
 |  sin(3*x + 5) dx
 |                 
/                  
0                  
00sin(3x+5)dx\int\limits_{0}^{0} \sin{\left(3 x + 5 \right)}\, dx
Integral(sin(3*x + 5), (x, 0, 0))
Detail solution
  1. Let u=3x+5u = 3 x + 5.

    Then let du=3dxdu = 3 dx and substitute du3\frac{du}{3}:

    sin(u)3du\int \frac{\sin{\left(u \right)}}{3}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      sin(u)du=sin(u)du3\int \sin{\left(u \right)}\, du = \frac{\int \sin{\left(u \right)}\, du}{3}

      1. The integral of sine is negative cosine:

        sin(u)du=cos(u)\int \sin{\left(u \right)}\, du = - \cos{\left(u \right)}

      So, the result is: cos(u)3- \frac{\cos{\left(u \right)}}{3}

    Now substitute uu back in:

    cos(3x+5)3- \frac{\cos{\left(3 x + 5 \right)}}{3}

  2. Now simplify:

    cos(3x+5)3- \frac{\cos{\left(3 x + 5 \right)}}{3}

  3. Add the constant of integration:

    cos(3x+5)3+constant- \frac{\cos{\left(3 x + 5 \right)}}{3}+ \mathrm{constant}


The answer is:

cos(3x+5)3+constant- \frac{\cos{\left(3 x + 5 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       cos(3*x + 5)
 | sin(3*x + 5) dx = C - ------------
 |                            3      
/                                    
sin(3x+5)dx=Ccos(3x+5)3\int \sin{\left(3 x + 5 \right)}\, dx = C - \frac{\cos{\left(3 x + 5 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1.00.0
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.