Mister Exam

Other calculators

Integral of (1)/(sin3x+5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  sin(3*x) + 5   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(3 x \right)} + 5}\, dx$$
Integral(1/(sin(3*x) + 5), (x, 0, 1))
The answer (Indefinite) [src]
                               /        /  pi   3*x\       /            ___    /3*x\\\
                               |        |- -- + ---|       |  ___   5*\/ 6 *tan|---|||
  /                        ___ |        |  2     2 |       |\/ 6               \ 2 /||
 |                       \/ 6 *|pi*floor|----------| + atan|----- + ----------------||
 |      1                      \        \    pi    /       \  12           12       //
 | ------------ dx = C + -------------------------------------------------------------
 | sin(3*x) + 5                                        18                             
 |                                                                                    
/                                                                                     
$$\int \frac{1}{\sin{\left(3 x \right)} + 5}\, dx = C + \frac{\sqrt{6} \left(\operatorname{atan}{\left(\frac{5 \sqrt{6} \tan{\left(\frac{3 x}{2} \right)}}{12} + \frac{\sqrt{6}}{12} \right)} + \pi \left\lfloor{\frac{\frac{3 x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{18}$$
The graph
The answer [src]
        /          /  ___\\         /          /  ___       ___         \\
    ___ |          |\/ 6 ||     ___ |          |\/ 6    5*\/ 6 *tan(3/2)||
  \/ 6 *|-pi + atan|-----||   \/ 6 *|-pi + atan|----- + ----------------||
        \          \  12 //         \          \  12           12       //
- ------------------------- + --------------------------------------------
              18                                   18                     
$$\frac{\sqrt{6} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{6}}{12} + \frac{5 \sqrt{6} \tan{\left(\frac{3}{2} \right)}}{12} \right)}\right)}{18} - \frac{\sqrt{6} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{6}}{12} \right)}\right)}{18}$$
=
=
        /          /  ___\\         /          /  ___       ___         \\
    ___ |          |\/ 6 ||     ___ |          |\/ 6    5*\/ 6 *tan(3/2)||
  \/ 6 *|-pi + atan|-----||   \/ 6 *|-pi + atan|----- + ----------------||
        \          \  12 //         \          \  12           12       //
- ------------------------- + --------------------------------------------
              18                                   18                     
$$\frac{\sqrt{6} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{6}}{12} + \frac{5 \sqrt{6} \tan{\left(\frac{3}{2} \right)}}{12} \right)}\right)}{18} - \frac{\sqrt{6} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{6}}{12} \right)}\right)}{18}$$
-sqrt(6)*(-pi + atan(sqrt(6)/12))/18 + sqrt(6)*(-pi + atan(sqrt(6)/12 + 5*sqrt(6)*tan(3/2)/12))/18
Numerical answer [src]
0.177048424709258
0.177048424709258

    Use the examples entering the upper and lower limits of integration.