Mister Exam

Other calculators

Integral of log(sin(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x)) dx
 |                
/                 
0                 
0π2log(sin(x))dx\int\limits_{0}^{\frac{\pi}{2}} \log{\left(\sin{\left(x \right)} \right)}\, dx
Integral(log(sin(x)), (x, 0, pi/2))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=log(sin(x))u{\left(x \right)} = \log{\left(\sin{\left(x \right)} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

    Then du(x)=cos(x)sin(x)\operatorname{du}{\left(x \right)} = \frac{\cos{\left(x \right)}}{\sin{\left(x \right)}}.

    To find v(x)v{\left(x \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    Now evaluate the sub-integral.

  2. Don't know the steps in finding this integral.

    But the integral is

    xcos(x)sin(x)dx\int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

  3. Now simplify:

    xlog(sin(x))xtan(x)dxx \log{\left(\sin{\left(x \right)} \right)} - \int \frac{x}{\tan{\left(x \right)}}\, dx

  4. Add the constant of integration:

    xlog(sin(x))xtan(x)dx+constantx \log{\left(\sin{\left(x \right)} \right)} - \int \frac{x}{\tan{\left(x \right)}}\, dx+ \mathrm{constant}


The answer is:

xlog(sin(x))xtan(x)dx+constantx \log{\left(\sin{\left(x \right)} \right)} - \int \frac{x}{\tan{\left(x \right)}}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
                          /                           
  /                      |                            
 |                       | x*cos(x)                   
 | log(sin(x)) dx = C -  | -------- dx + x*log(sin(x))
 |                       |  sin(x)                    
/                        |                            
                        /                             
log(sin(x))dx=C+xlog(sin(x))xcos(x)sin(x)dx\int \log{\left(\sin{\left(x \right)} \right)}\, dx = C + x \log{\left(\sin{\left(x \right)} \right)} - \int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx
The answer [src]
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x)) dx
 |                
/                 
0                 
0π2log(sin(x))dx\int\limits_{0}^{\frac{\pi}{2}} \log{\left(\sin{\left(x \right)} \right)}\, dx
=
=
 pi               
 --               
 2                
  /               
 |                
 |  log(sin(x)) dx
 |                
/                 
0                 
0π2log(sin(x))dx\int\limits_{0}^{\frac{\pi}{2}} \log{\left(\sin{\left(x \right)} \right)}\, dx
Integral(log(sin(x)), (x, 0, pi/2))
Numerical answer [src]
-1.0887930451518
-1.0887930451518

    Use the examples entering the upper and lower limits of integration.