Integral of ctg(x)/logsin(x) dx
The solution
The answer (Indefinite)
[src]
/ /
| |
| cot(x) | cot(x)
| ----------- dx = C + | ----------- dx
| log(sin(x)) | log(sin(x))
| |
/ /
∫log(sin(x))cot(x)dx=C+∫log(sin(x))cot(x)dx
1
/
|
| cot(x)
| ----------- dx
| log(sin(x))
|
/
0
0∫1log(sin(x))cot(x)dx
=
1
/
|
| cot(x)
| ----------- dx
| log(sin(x))
|
/
0
0∫1log(sin(x))cot(x)dx
Integral(cot(x)/log(sin(x)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.