Mister Exam

Other calculators

Integral of ctg(x)/logsin(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     cot(x)     
 |  ----------- dx
 |  log(sin(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)}}\, dx$$
Integral(cot(x)/log(sin(x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                       /              
 |                       |               
 |    cot(x)             |    cot(x)     
 | ----------- dx = C +  | ----------- dx
 | log(sin(x))           | log(sin(x))   
 |                       |               
/                       /                
$$\int \frac{\cot{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)}}\, dx = C + \int \frac{\cot{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)}}\, dx$$
The answer [src]
  1               
  /               
 |                
 |     cot(x)     
 |  ----------- dx
 |  log(sin(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)}}\, dx$$
=
=
  1               
  /               
 |                
 |     cot(x)     
 |  ----------- dx
 |  log(sin(x))   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\cot{\left(x \right)}}{\log{\left(\sin{\left(x \right)} \right)}}\, dx$$
Integral(cot(x)/log(sin(x)), (x, 0, 1))
Numerical answer [src]
-5.54301012933614
-5.54301012933614

    Use the examples entering the upper and lower limits of integration.