Mister Exam

Other calculators

Integral of log(sin(x)^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |     /   3   \   
 |  log\sin (x)/ dx
 |                 
/                  
0                  
01log(sin3(x))dx\int\limits_{0}^{1} \log{\left(\sin^{3}{\left(x \right)} \right)}\, dx
Integral(log(sin(x)^3), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

    Let u(x)=log(sin3(x))u{\left(x \right)} = \log{\left(\sin^{3}{\left(x \right)} \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

    Then du(x)=3cos(x)sin(x)\operatorname{du}{\left(x \right)} = \frac{3 \cos{\left(x \right)}}{\sin{\left(x \right)}}.

    To find v(x)v{\left(x \right)}:

    1. The integral of a constant is the constant times the variable of integration:

      1dx=x\int 1\, dx = x

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    3xcos(x)sin(x)dx=3xcos(x)sin(x)dx\int \frac{3 x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx = 3 \int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      xcos(x)sin(x)dx\int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

    So, the result is: 3xcos(x)sin(x)dx3 \int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx

  3. Now simplify:

    xlog(sin3(x))3xtan(x)dxx \log{\left(\sin^{3}{\left(x \right)} \right)} - 3 \int \frac{x}{\tan{\left(x \right)}}\, dx

  4. Add the constant of integration:

    xlog(sin3(x))3xtan(x)dx+constantx \log{\left(\sin^{3}{\left(x \right)} \right)} - 3 \int \frac{x}{\tan{\left(x \right)}}\, dx+ \mathrm{constant}


The answer is:

xlog(sin3(x))3xtan(x)dx+constantx \log{\left(\sin^{3}{\left(x \right)} \right)} - 3 \int \frac{x}{\tan{\left(x \right)}}\, dx+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          /                            
 |                          |                             
 |    /   3   \             | x*cos(x)           /   3   \
 | log\sin (x)/ dx = C - 3* | -------- dx + x*log\sin (x)/
 |                          |  sin(x)                     
/                           |                             
                           /                              
log(sin3(x))dx=C+xlog(sin3(x))3xcos(x)sin(x)dx\int \log{\left(\sin^{3}{\left(x \right)} \right)}\, dx = C + x \log{\left(\sin^{3}{\left(x \right)} \right)} - 3 \int \frac{x \cos{\left(x \right)}}{\sin{\left(x \right)}}\, dx
The answer [src]
  1                
  /                
 |                 
 |     /   3   \   
 |  log\sin (x)/ dx
 |                 
/                  
0                  
01log(sin3(x))dx\int\limits_{0}^{1} \log{\left(\sin^{3}{\left(x \right)} \right)}\, dx
=
=
  1                
  /                
 |                 
 |     /   3   \   
 |  log\sin (x)/ dx
 |                 
/                  
0                  
01log(sin3(x))dx\int\limits_{0}^{1} \log{\left(\sin^{3}{\left(x \right)} \right)}\, dx
Integral(log(sin(x)^3), (x, 0, 1))
Numerical answer [src]
-3.17016061797475
-3.17016061797475

    Use the examples entering the upper and lower limits of integration.