1 / | | x | - | y | E dx | / 0
Integral(E^(x/y), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | x x | - - | y y | E dx = C + y*e | /
1 - y -y + y*e
=
1 - y -y + y*e
-y + y*exp(1/y)
Use the examples entering the upper and lower limits of integration.