Mister Exam

Other calculators:


log(sin(x))

Limit of the function log(sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  log(sin(x))
x->pi+           
limxπ+log(sin(x))\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)}
Limit(log(sin(x)), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0123456-6-5-4-3-2-1-5050
One‐sided limits [src]
 lim  log(sin(x))
x->pi+           
limxπ+log(sin(x))\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)}
-oo
-\infty
= (-8.84636960921524 + 3.14159265358979j)
 lim  log(sin(x))
x->pi-           
limxπlog(sin(x))\lim_{x \to \pi^-} \log{\left(\sin{\left(x \right)} \right)}
-oo
-\infty
= -8.84633718726286
= -8.84633718726286
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limxπlog(sin(x))=\lim_{x \to \pi^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty
More at x→pi from the left
limxπ+log(sin(x))=\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty
limxlog(sin(x))=log(1,1)\lim_{x \to \infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}
More at x→oo
limx0log(sin(x))=\lim_{x \to 0^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty
More at x→0 from the left
limx0+log(sin(x))=\lim_{x \to 0^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty
More at x→0 from the right
limx1log(sin(x))=log(sin(1))\lim_{x \to 1^-} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}
More at x→1 from the left
limx1+log(sin(x))=log(sin(1))\lim_{x \to 1^+} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}
More at x→1 from the right
limxlog(sin(x))=log(1,1)\lim_{x \to -\infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}
More at x→-oo
Numerical answer [src]
(-8.84636960921524 + 3.14159265358979j)
(-8.84636960921524 + 3.14159265358979j)
The graph
Limit of the function log(sin(x))