Mister Exam

Other calculators:


log(sin(x))

Limit of the function log(sin(x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  log(sin(x))
x->pi+           
$$\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)}$$
Limit(log(sin(x)), x, pi)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim  log(sin(x))
x->pi+           
$$\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)}$$
-oo
$$-\infty$$
= (-8.84636960921524 + 3.14159265358979j)
 lim  log(sin(x))
x->pi-           
$$\lim_{x \to \pi^-} \log{\left(\sin{\left(x \right)} \right)}$$
-oo
$$-\infty$$
= -8.84633718726286
= -8.84633718726286
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \pi^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→pi from the left
$$\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
$$\lim_{x \to \infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→oo
$$\lim_{x \to 0^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo
Numerical answer [src]
(-8.84636960921524 + 3.14159265358979j)
(-8.84636960921524 + 3.14159265358979j)
The graph
Limit of the function log(sin(x))