$$\lim_{x \to \pi^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→pi from the left$$\lim_{x \to \pi^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
$$\lim_{x \to \infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→oo$$\lim_{x \to 0^-} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→0 from the left$$\lim_{x \to 0^+} \log{\left(\sin{\left(x \right)} \right)} = -\infty$$
More at x→0 from the right$$\lim_{x \to 1^-} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\sin{\left(1 \right)} \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty} \log{\left(\sin{\left(x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo