Mister Exam

Integral of ln(2x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  log(2*x + 3) dx
 |                 
/                  
0                  
01log(2x+3)dx\int\limits_{0}^{1} \log{\left(2 x + 3 \right)}\, dx
Integral(log(2*x + 3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2x+3u = 2 x + 3.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      log(u)4du\int \frac{\log{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        log(u)2du=log(u)du2\int \frac{\log{\left(u \right)}}{2}\, du = \frac{\int \log{\left(u \right)}\, du}{2}

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=log(u)u{\left(u \right)} = \log{\left(u \right)} and let dv(u)=1\operatorname{dv}{\left(u \right)} = 1.

          Then du(u)=1u\operatorname{du}{\left(u \right)} = \frac{1}{u}.

          To find v(u)v{\left(u \right)}:

          1. The integral of a constant is the constant times the variable of integration:

            1du=u\int 1\, du = u

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

          1du=u\int 1\, du = u

        So, the result is: ulog(u)2u2\frac{u \log{\left(u \right)}}{2} - \frac{u}{2}

      Now substitute uu back in:

      x+(2x+3)log(2x+3)232- x + \frac{\left(2 x + 3\right) \log{\left(2 x + 3 \right)}}{2} - \frac{3}{2}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(2x+3)u{\left(x \right)} = \log{\left(2 x + 3 \right)} and let dv(x)=1\operatorname{dv}{\left(x \right)} = 1.

      Then du(x)=22x+3\operatorname{du}{\left(x \right)} = \frac{2}{2 x + 3}.

      To find v(x)v{\left(x \right)}:

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      2x2x+3dx=2x2x+3dx\int \frac{2 x}{2 x + 3}\, dx = 2 \int \frac{x}{2 x + 3}\, dx

      1. Rewrite the integrand:

        x2x+3=1232(2x+3)\frac{x}{2 x + 3} = \frac{1}{2} - \frac{3}{2 \cdot \left(2 x + 3\right)}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          12dx=x2\int \frac{1}{2}\, dx = \frac{x}{2}

        1. The integral of a constant times a function is the constant times the integral of the function:

          (32(2x+3))dx=312x+3dx2\int \left(- \frac{3}{2 \cdot \left(2 x + 3\right)}\right)\, dx = - \frac{3 \int \frac{1}{2 x + 3}\, dx}{2}

          1. Let u=2x+3u = 2 x + 3.

            Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

            14udu\int \frac{1}{4 u}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              12udu=1udu2\int \frac{1}{2 u}\, du = \frac{\int \frac{1}{u}\, du}{2}

              1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

              So, the result is: log(u)2\frac{\log{\left(u \right)}}{2}

            Now substitute uu back in:

            log(2x+3)2\frac{\log{\left(2 x + 3 \right)}}{2}

          So, the result is: 3log(2x+3)4- \frac{3 \log{\left(2 x + 3 \right)}}{4}

        The result is: x23log(2x+3)4\frac{x}{2} - \frac{3 \log{\left(2 x + 3 \right)}}{4}

      So, the result is: x3log(2x+3)2x - \frac{3 \log{\left(2 x + 3 \right)}}{2}

  2. Now simplify:

    x+(2x+3)log(2x+3)232- x + \frac{\left(2 x + 3\right) \log{\left(2 x + 3 \right)}}{2} - \frac{3}{2}

  3. Add the constant of integration:

    x+(2x+3)log(2x+3)232+constant- x + \frac{\left(2 x + 3\right) \log{\left(2 x + 3 \right)}}{2} - \frac{3}{2}+ \mathrm{constant}


The answer is:

x+(2x+3)log(2x+3)232+constant- x + \frac{\left(2 x + 3\right) \log{\left(2 x + 3 \right)}}{2} - \frac{3}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                      
 |                     3           (2*x + 3)*log(2*x + 3)
 | log(2*x + 3) dx = - - + C - x + ----------------------
 |                     2                     2           
/                                                        
(2x+3)log(2x+3)2x32{{\left(2\,x+3\right)\,\log \left(2\,x+3\right)-2\,x-3}\over{2}}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
     3*log(3)   5*log(5)
-1 - -------- + --------
        2          2    
5log53log322{{5\,\log 5-3\,\log 3-2}\over{2}}
=
=
     3*log(3)   5*log(5)
-1 - -------- + --------
        2          2    
3log(3)21+5log(5)2- \frac{3 \log{\left(3 \right)}}{2} - 1 + \frac{5 \log{\left(5 \right)}}{2}
Numerical answer [src]
1.37567634808309
1.37567634808309
The graph
Integral of ln(2x+3) dx

    Use the examples entering the upper and lower limits of integration.